scholarly journals Direct and indirect facilitation affect community productivity through changes in functional diversity in an alpine system

2020 ◽  
Author(s):  
Xiangtai Wang ◽  
Richard Michalet ◽  
Lihua Meng ◽  
Xianhui Zhou ◽  
Shuyan Chen ◽  
...  

Abstract Background and Aims Facilitation is an important ecological process for plant community structure and functional composition. Although direct facilitation has accrued most of the evidence so far, indirect facilitation is ubiquitous in nature and it has an enormous potential to explain community structuring. In this study, we assess the effect of direct and indirect facilitation on community productivity via taxonomic and functional diversity. Methods In an alpine community on the Tibetan Plateau, we manipulated the presence of the shrub Dasiphora fruticosa and graminoids in a fenced meadow and a grazed meadow to quantify the effects of direct and indirect facilitation. We measured four plant traits: height, lateral spread, specific leaf area (SLA) and leaf dry matter content (LDMC) of forbs; calculated two metrics of functional diversity [range of trait and community-weighted mean (CWM) of trait]; and assessed the responses of functional diversity to shrub facilitation. We used structural equation modelling to explore how shrubs directly and indirectly drove community productivity via taxonomic diversity and functional diversity. Key Results We found stronger effects from herbivore-mediated indirect facilitation than direct facilitation on productivity and taxonomic diversity, regardless of the presence of graminoids. For functional diversity, the range and CWM of height and SLA, rather than lateral spread and LDMC, generally increased due to direct and indirect facilitation. Moreover, we found that the range of traits played a primary role over taxonomic diversity and CWM of traits in terms of shrub effects on community productivity. Conclusions Our study reveals that the mechanism of shrub direct and indirect facilitation of community productivity in this alpine community is expanding the realized niche (i.e. expanding range of traits). Our findings indicate that facilitators might increase trait dispersion in the local community, which could alleviate the effect of environmental filters on trait values in harsh environments, thereby contributing to ecosystem functioning.

Diversity ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 466
Author(s):  
Alessandro Bricca ◽  
Maria Laura Carranza ◽  
Marco Varricchione ◽  
Maurizio Cutini ◽  
Angela Stanisci

We analyzed plant functional diversity (FD) and redundancy (FR) in Mediterranean high-mountain communities to explore plant functional patterns and assembly rules. We focused on three above-ground plant traits: plant height (H), a good surrogate of competition for light strategies, and specific leaf area (SLA) and leaf dry matter content (LDMC), useful indicators of resource exploitation functional schemes. We used the georeferenced vegetation plots and field-measured plant functional traits of four widely spread vegetation types growing on screes, steep slopes, snowbeds and ridges, respectively. We calculated Rao’s FD and FR followed by analysis of standardized effect size, and compared FD and FR community values using ANOVA and the Tukey post hoc test. Assemblage rules varied across plant communities and traits. The High FRH registered on snowbeds and ridges is probably linked to climatic filtering processes, while the high FDH and low FDSLA and FDLDMC on steep slopes could be related with underlying competition mechanisms. The absence of FD patterns in scree vegetation pinpoint random assembly processes which are typical of highly unstable or disturbed ecosystems. Improved knowledge about the deterministic/stochastic processes shaping species coexistence on high mountain ecosystems should help researchers to understand and predict vegetation vulnerability to environmental changes.


2022 ◽  
Author(s):  
Leticia Bonilla-Valencia ◽  
Silvia Castillo-Argüero ◽  
José Alejandro Zavala-Hurtado ◽  
Francisco Javier Espinosa-García ◽  
Roberto Lindig-Cisneros ◽  
...  

Functional diversity is related to the maintenance of processes and functions in ecosystems. However, there is a lack of a conceptual framework that highlights the application of functional diversity as an ecological indicator. Therefore, we present a new initiative for motivating the development of ecological indicators based on functional diversity. We are interested in showing the challenges and solutions associated with these indicators. We integrated species assemblage theories and literature reviews. We considered plant traits related to ecosystem processes and functions (specific leaf area, leaf dry matter content, wood density, phenology, and seed mass) to show the application of a selection of functional diversity metrics that can be used as ecological indicators (i.e., Community Weighted-Mean, Functional Divergence, Functional Richness and Functional Evenness). We caution that functional diversity as an ecological indicator can be misinterpreted if species composition is unknown. Functional diversity values can be overrepresented by weed species (species established in disturbed sites) and do not maintain original processes and functions in ecosystems. Therefore, we searched for evidence to demonstrate that weed species are ecological indicators of functional diversity changes. We found support for two hypotheses that explain the effect of weed species on ecosystem function: functional homogenization and functional transformation. Likewise, we showed the application of some tools that can help study the anthropogenic effect on functional indicators. This review shows that the paradigm of addressing the effects of disturbances on ecosystem processes by using functional diversity as an ecological indicator can improve environmental evaluation, particularly in areas affected by human activities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Li ◽  
Shuqiang He ◽  
Xiping Cheng ◽  
Mingqiang Zhang

AbstractAlpine grasslands harbor diverse groups of flora and fauna, provide important ecosystem functions, and yield essential ecosystem goods and services, especially for the development of nature-based tourism. However, they are experiencing increasing anthropogenic perturbations such as tourist trampling. Although negative effects of tourist trampling on alpine vegetation have been frequently reported, previous studies have focused mainly on changes in taxonomic diversity after trampling, and rarely provide a mechanistic elucidation of trampling effects from a trait-based perspective. The present study evaluates the impacts of simulated trampling on taxonomic and functional diversity of a typical alpine grassland community in Shangri-La, China using a standardized protocol. The results showed that although taxonomic diversity was not statistically significantly affected by trampling, some functional attributes responded rapidly to trampling disturbance. Specifically, functional divergence decreased with an increase in trampling intensity, and characteristics of community-weighted mean trait values changed towards shorter species with reduced leaf area and lower leaf dry matter content. Such strong shifts in functional attributes may further affect ecosystem goods and services provided by alpine grasslands. Our inclusion of functional diversity in the analysis thus adds an important caution to previous studies predominantly focusing on taxonomic diversity, and it is urgent to keep alpine grasslands well managed and ecologically coherent so that their valuable functions and services can be safeguarded.


Solid Earth ◽  
2017 ◽  
Vol 8 (1) ◽  
pp. 137-147 ◽  
Author(s):  
Wei Li ◽  
Howard E. Epstein ◽  
Zhongming Wen ◽  
Jie Zhao ◽  
Jingwei Jin ◽  
...  

Abstract. Climate change and human activities have caused a shift in vegetation composition and soil biogeochemical cycles of alpine wetlands on the Tibetan Plateau. The primary goal of this study was to test for associations between community-weighted mean (CWM) traits, functional diversity, and soil properties during wetland drying. We collected soil samples and investigated the aboveground vegetation in swamp, swamp meadow, and typical meadow environments. Four CWM trait values (specific leaf area is SLA, leaf dry matter content is LDMC, leaf area is LA, and mature plant height is MPH) for 42 common species were measured across the three habitats; three components of functional diversity (functional richness, functional evenness, and functional divergence) were also quantified at these sites. Our results showed that the drying of the wetland dramatically altered plant community and soil properties. There was a significant correlation between CWM of traits and soil properties, but not a significant correlation between functional diversity and soil properties. Our results further showed that CWM-LA, CWM-SLA, and CWM-LDMC had positive correlations with soil readily available nutrients (available nitrogen, AN; available phosphorus, AP), but negative correlations with total soil nutrients (soil organic carbon is SOC, total nitrogen is TN, and total phosphorus is TP). Our study demonstrated that simple, quantitative plant functional traits, but not functional diversity, are directly related to soil C and N properties, and they likely play an important role in plant–soil interactions. Our results also suggest that functional identity of species may be more important than functional diversity in influencing ecosystem processes during wetland drying.


2016 ◽  
Author(s):  
Wei Li ◽  
Howard E. Epstein ◽  
Zhongmin Wen ◽  
Jie Zhao ◽  
Jingwei Jin ◽  
...  

Abstract. Climate change and human activities have caused a shift in vegetation composition and soil biogeochemical cycles of alpine wetlands on the Tibetan Plateau. The primary goal of this study was to test for associations between community-weighted mean (CWM) trait and functional diversity, and soil properties during wetland drying. We collected soil samples and investigated the above-ground vegetation in swamp, swamp meadow and typical meadow; four CWM trait values (specific leaf area, SLA; leaf dry matter content, LDMC; leaf area, LA; and mature plant height, MPH) for 42 common species were measured across the three habitats; three components of functional diversity (functional richness; functional evenness; and functional divergence) were also quantified in these sites. Our results showed that the drying of the wetland dramatically altered plant community and soil properties. There was a significant correlation between CWM of traits and soil properties, but not a significant correlation between functional diversity and soil properties. Our results further showed that CWM-LA, CWM-SLA and CWM-LDMC had positive correlations with soil readily available nutrients (available nitrogen, AN; available phosphorus, AP), but negative correlations with total soil nutrients (soil organic carbon, SOC; total nitrogen TN; and total phosphorus, TP). Our study demonstrated that simple, quantitative plant functional traits, but not functional diversity, are directly related to soil C / N properties, and likely play an important role in plant-soil interactions, and our results also suggest that functional identity of species may be more important than functional diversity in influencing ecosystem processes during wetland drying.


2021 ◽  
Author(s):  
Xiaoxia Huang ◽  
Zhilu Sheng ◽  
Kejian He ◽  
Yong Zhang ◽  
Bin Kang ◽  
...  

Abstract Aims The aims of this study were to assess how functional diversity and redundancy respond to subalpine meadow ecosystem degradation under anthropogenic disturbance and how species contribute to functional redundancy along the disturbance gradient. Methods The study was carried out in the subalpine meadow in Mount Jade Dragon, which is located at the southeastern edge of the Tibetan Plateau. Four disturbance intensities [no disturbance (ND), weak disturbance (WD), moderate disturbance (MD), and severe disturbance (SD)] were identified. Species richness, soil properties, and five key plant functional traits were assessed along the disturbance gradient. Simpson’s diversity index, functional diversity based on the Rao algorithm, functional redundancy, community weighted mean of each functional trait, and species-level functional redundancy were determined. Important Findings Unimodal change pattern of functional diversity and functional redundancy along the disturbance gradient were found in the present study, with their maximum in MD and WD, respectively. Species diversity showed a decreasing trend with increasing disturbance intensity. As disturbance intensified, species with traits related to conservative growth strategies, such as low specific leaf area (SLA) and high leaf dry matter content (LDMC), decreased, whereas species with resource acquisitive strategies, such as small plant, high SLA and low LDMC, increased in the community. At the species level, species showed species-specific roles in functional redundancy. Notably, some species were important in the community in terms of their unique function. For instance, Ligularia dictyoneura in ND and Potentilla delavayi in MD and SD.


2021 ◽  
Vol 8 (6) ◽  
pp. 202093
Author(s):  
Aurélien Ridel ◽  
Denis Lafage ◽  
Pierre Devogel ◽  
Thomas Lacoue-Labarthe ◽  
Julien Pétillon

Mechanisms underlying biological diversities at different scales have received significant attention over the last decades. The hypothesis of whether local abiotic factors, driving functional and phylogenetic diversities, can differ among taxa of arthropods remains under-investigated. In this study, we compared correlations and drivers of functional diversity (FD) and phylogenetic diversity (PD) between spiders and carabids, two dominant taxa of ground-dwelling arthropods in salt marshes. Both taxa exhibited high correlation between FD and PD; the correlation was even higher in carabids, probably owing to their lower species richness. Analyses using structural equation modelling highlighted that FD and PD were positively linked to taxonomic diversity (TD) in both taxa; however, abiotic factors driving the FD and PD differed between spiders and carabids. Salinity particularly drove the TD of carabids, but not that of spiders, suggesting that spiders are phenotypically more plastic and less selected by this factor. Conversely, PD was influenced by salinity in spiders, but not in carabids. This result can be attributed to the different evolutionary history and colonization process of salt marshes between the two model taxa. Finally, our study highlights that, in taxa occupying the same niche in a constrained habitat, FD and PD can have different drivers, and thereby different filtering mechanisms.


2013 ◽  
Vol 26 (21) ◽  
pp. 8378-8391 ◽  
Author(s):  
Yi Zhang ◽  
Rucong Yu ◽  
Jian Li ◽  
Weihua Yuan ◽  
Minghua Zhang

Abstract Given the large discrepancies that exist in climate models for shortwave cloud forcing over eastern China (EC), the dynamic (vertical motion and horizontal circulation) and thermodynamic (stability) relations of stratus clouds and the associated cloud radiative forcing in the cold season are examined. Unlike the stratus clouds over the southeastern Pacific Ocean (as a representative of marine boundary stratus), where thermodynamic forcing plays a primary role, the stratus clouds over EC are affected by both dynamic and thermodynamic factors. The Tibetan Plateau (TP)-forced low-level large-scale lifting and high stability over EC favor the accumulation of abundant saturated moist air, which contributes to the formation of stratus clouds. The TP slows down the westerly overflow through a frictional effect, resulting in midlevel divergence, and forces the low-level surrounding flows, resulting in convergence. Both midlevel divergence and low-level convergence sustain a rising motion and vertical water vapor transport over EC. The surface cold air is advected from the Siberian high by the surrounding northerly flow, causing low-level cooling. The cooling effect is enhanced by the blocking of the YunGui Plateau. The southwesterly wind carrying warm, moist air from the east Bay of Bengal is uplifted by the HengDuan Mountains via topographical forcing; the midtropospheric westerly flow further advects the warm air downstream of the TP, moistening and warming the middle troposphere on the lee side of the TP. The low-level cooling and midlevel warming together increase the stability. The favorable dynamic and thermodynamic large-scale environment allows for the formation of stratus clouds over EC during the cold season.


2021 ◽  
Vol 9 (4) ◽  
pp. 198-217
Author(s):  
T. Venugopalan

This research paper explores the economic, environmental, and socio-cultural sustainability of Delhi tourism from the perspective of tourists. Primary research was conducted among tourists based on a structured questionnaire at various tourist places across Delhi. This research paper used exploratory factor analysis (EFA), confirmatory factor analysis (CFA), and structural equation modelling (SEM) for examining and analysing the sustainability of tourism. The research findings on environmental pressure (EP) validate that tourism has been exerting huge pressure on the environment. The environment management (EM) system adopted by the tourism industry has failed in mitigating the adverse impacts of tourism and achieving environmental sustainability. The findings about economic empowerment (EP) prove that tourism has failed to achieve economic sustainability by empowering the local community. The destination governance (DG) mechanisms are directly contributing to the sustainability of tourist places. However, the findings on socio-cultural pressure (SP) fail to substantiate the argument that tourism is putting huge pressure on socio-cultural sustainability. Thus, tourism development in Delhi is not conducive to achieving environmental, economic, and social sustainability. Hence, the government should adopt proactive measures to mitigate the adverse impacts of tourism on the environment and economy integrating local communities while formulating and implementing tourism plans and programmes.


Sign in / Sign up

Export Citation Format

Share Document