scholarly journals Physical and social cues shape nest-site preference and prey capture behavior in social spiders

2020 ◽  
Vol 31 (3) ◽  
pp. 627-632 ◽  
Author(s):  
Gabriella M Najm ◽  
Angelika Pe ◽  
Jonathan N Pruitt ◽  
Noa Pinter-Wollman

Abstract Animals often face conflicting demands when making movement decisions. To examine the decision process of social animals, we evaluated nest-site preferences of the social spider Stegodyphus dumicola. Colonies engage in collective web building, constructing 3D nests and 2D capture webs on trees and fences. We examined how individuals and groups decide where to construct a nest based on habitat structure and conspecific presence. Individuals had a strong preference for 3D substrates and conspecific presence. Groups were then provided with conflicting options of 3D substrates versus 2D substrates with a conspecific. Groups preferred the 3D structures without presettled conspecifics over a 2D substrate with conspecifics. When a group fragmented and individuals settled on both substrates, the minority group eventually joined the majority. Before rejoining, the collective prey capture behavior of divided groups improved with the size of the majority fragment. The costs of slow responses to prey for split groups and weak conspecific attraction may explain why dispersal is rare in these spiders.

Ethology ◽  
2007 ◽  
Vol 113 (9) ◽  
pp. 856-861 ◽  
Author(s):  
Andréa L.T. Souza ◽  
Marcelo O. Gonzaga ◽  
João Vasconcellos-Neto

Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 30
Author(s):  
Clémence Rose ◽  
Andreas Schramm ◽  
John Irish ◽  
Trine Bilde ◽  
Tharina L. Bird

An animals’ habitat defines the resources that are available for its use, such as host plants or food sources, and the use of these resources are critical for optimizing fitness. Spiders are abundant in all terrestrial habitats and are often associated with vegetation, which may provide structure for anchoring capture webs, attract insect prey, or provide protective function. Social spiders construct sedentary communal silk nests on host plants, but we know little about whether and how they make nest-site decisions. We examined host plant use in relation to host plant availability in the social spider Stegodyphus dumicola Pocock, 1898 (Eresidae) across different arid biomes in Namibia and analysed the role of host plant characteristics (height, spines, scent, sturdiness) on nest occurrence. Host plant communities and densities differed between locations. Spider nests were relatively more abundant on Acacia spp., Boscia foetida, Combretum spp., Dichrostachys cinerea, Parkinsonia africana, Tarchonanthus camphoratus, and Ziziphus mucronatus, and nests survived longer on preferred plant genera Acacia, Boscia and Combretum. Spider nests were relatively more abundant on plants higher than 2 m, and on plants with thorns and with a rigid structure. Our results suggest that spiders display differential use of host plant species, and that characteristics such as rigidity and thorns confer benefits such as protection from browsing animals.


1994 ◽  
Vol 42 (2) ◽  
pp. 237 ◽  
Author(s):  
MF Downes

Aspects of the biology of the social spider Phryganoponrs candidus (=Badumna candida) (L. Koch) in relation to its life history are described, based on data from a field and laboratory study conducted over several years at Townsville, Queensland. Host plant records and preferences are given, and an analysis made of the effects of nest height and ecotone proximity on nest occurrence. Founded between October and February as a chambered silk funnel by a solitary subadult female, the nest was enlarged by the female and her progeny into a complex retreat area and an outlying prey-trapping area. The architecture of the retreat was not an aggregation of repeated subunits. Closely adjacent nests sometimes united their prey-capture webbing to form compound nests. From a tagged sample of new-founded nests, 31% reached a stage at which thriving spiderlings were present. Numbers of spiders in nests ranged from 9 to 224 and correlated with nest size, which ranged from 70 to more than 20 000 cm(2). At the peak of nest growth in October, the stage at which subadult spiders began to disperse, about 90 spiders inhabited each nest; only 12% of new-founded nests reached this stage. Summer dispersal left nests empty; they degenerated under rain and became moribund by March. The main host plants were Zizyphus mauritiana (the chinee apple) and Dolichondrone heterophylla. Most nests occurred between 0.5 and 2.5 m from the ground but height did not influence nest success. Nests were prevalent at ecotones, although they did not thrive better there. Because so much of the social biology of spiders is integrated with the structure and function of their nests, these findings are relevant to an understanding of the evolution of sociality in spiders.


2015 ◽  
Vol 282 (1814) ◽  
pp. 20151766 ◽  
Author(s):  
Jonathan N. Pruitt ◽  
Noa Pinter-Wollman

The collective behaviour of social groups is often strongly influenced by one or few individuals, termed here ‘keystone individuals’. We examined whether the influence of keystone individuals on collective behaviour lingers after their departure and whether these lingering effects scale with their tenure in the group. In the social spider, Stegodyphus dumicola , colonies' boldest individuals wield a disproportionately large influence over colony behaviour. We experimentally manipulated keystones' tenure in laboratory-housed colonies and tracked their legacy effects on collective prey capture following their removal. We found that bolder keystones caused more aggressive collective foraging behaviour and catalysed greater inter-individual variation in boldness within their colonies. The longer keystones remained in a colony, the longer both of these effects lingered after their departure. Our data demonstrate that, long after their disappearance, keystones have large and lasting effects on social dynamics at both the individual and colony levels.


2002 ◽  
Vol 80 (6) ◽  
pp. 1117-1123 ◽  
Author(s):  
Alberto Velando ◽  
José C Márquez

Most tern species (Sternidae) are typically open-ground breeders; the Inca tern (Larosterna inca), however, breeds in crevices. This paper reports the first analysis of nest-site characteristics, predation rates, and breeding success in this species. We tested for evidence of natural selection on nest-site preferences in a colony subjected to high rates of predation by the peregrine falcon (Falco peregrinus). Characteristics of occupied sites differed from those of non-occupied sites. Terns selected sites with longer chambers, a greater number of cavities, and more overhead and lateral cover that were located close to the cliff edge. Predation was the main cause of breeding failure, and successful sites differed from unsuccessful sites, which is evidence for ongoing natural selection. Chicks at sites in larger crevices and more cavities remained at the site longer and were less likely to be depredated by peregrine falcons. Probably in response to the presence of predators, adults flew towards the colony in flocks, which "dissolved" at the cliff edge. Sites located far from the edge were more likely to be depredated and adults breeding there fed their chicks less frequently and, consequently, reared lighter chicks. The concordance between site preference and predation pressure on nest-site selection suggests that the use of non-preferred sites imposed a cost in the form of increased nest predation.


2019 ◽  
Vol 30 (4) ◽  
pp. 938-947
Author(s):  
Bharat Parthasarathy ◽  
Hema Somanathan

Abstract Predators living in social groups often show consistent interindividual differences in prey capture behavior that may be linked to personality. Though personality predisposes individuals for certain behaviors, responses can also be influenced by context. Studies examining personality-dependent participation in prey capture have largely employed only one prey species, offering the predator no choice. In nature, predators encounter a range of prey species, therefore participation in or leading a prey capture event must also depend on prey attributes (e.g., size and risk). In the social spider Stegodyphus sarasinorum, collective prey capture is mediated by personality types as a consequence of which some individuals are consistently more likely to attack. Here, we examined if an individual’s consistency to attack persisted within and between the 2 prey species (honeybees and grasshoppers) and if the same individuals attacked first with both prey species. Our results showed that interindividual differences in attacking persisted within and between the 2 prey species. Spiders showed greater participation in attacking grasshoppers relative to bees. Identities of the first attackers were not the same for bees and grasshoppers. Spiders showed greater consistency over time in attacking bees relative to grasshoppers. Bees attracted fewer attackers than size-matched grasshoppers. These results suggest that greater task specialization may be necessary to successfully subdue bees. Spiders handled bees more cautiously, which is likely to explain the observed plasticity in attacking the 2 prey species. Thus, participation in prey capture in social spiders is influenced by the attributes of prey species.


1983 ◽  
Vol 61 (4) ◽  
pp. 334-340 ◽  
Author(s):  
FRITZ VOLLRATH ◽  
DOROTHEE ROHDE-ARNDT

2013 ◽  
Vol 280 (1767) ◽  
pp. 20131407 ◽  
Author(s):  
Lena Grinsted ◽  
Jonathan N. Pruitt ◽  
Virginia Settepani ◽  
Trine Bilde

Deciphering the mechanisms involved in shaping social structure is key to a deeper understanding of the evolutionary processes leading to sociality. Individual specialization within groups can increase colony efficiency and consequently productivity. Here, we test the hypothesis that within-group variation in individual personalities (i.e. boldness and aggression) can shape task differentiation. The social spider Stegodyphus sarasinorum (Eresidae) showed task differentiation (significant unequal participation) in simulated prey capture events across 10-day behavioural assays in the field, independent of developmental stage (level of maturation), eliminating age polyethism. Participation in prey capture was positively associated with level of boldness but not with aggression. Body size positively correlated with being the first spider to emerge from the colony as a response to prey capture but not with being the first to attack, and dispersal distance from experimental colonies correlated with attacking but not with emerging. This suggests that different behavioural responses to prey capture result from a complex set of individual characteristics. Boldness and aggression correlated positively, but neither was associated with body size, developmental stage or dispersal distance. Hence, we show that personalities shape task differentiation in a social spider independent of age and maturation. Our results suggest that personality measures obtained in solitary, standardized laboratory settings can be reliable predictors of behaviour in a social context in the field. Given the wealth of organisms that show consistent individual behavioural differences, animal personality could play a role in social organization in a diversity of animals.


1993 ◽  
Vol 41 (5) ◽  
pp. 441 ◽  
Author(s):  
MF Downes

A two-year study of the social spider Badumna candida at Townsville, Queensland, provided information on colony size and changes over time, maturation synchrony, temperature effects on development, sex ratio, dispersal, colony foundation, fecundity and oviposition. Key findings were that B. candida outbred, had an iteroparous egg-production cycle between March and October, had an even primary sex ratio and achieved maturation synchrony by retarding the development of males, which matured faster than females at constant temperature. There was no overlap of generations, the cohort of young from a nest founded by a solitary female in summer dispersing the following summer as subadults (females) or subadults and adults (males). These findings confirm the status of B. candida as a periodic-social spider (an annual outbreeder), in contrast to the few known permanent-social spider species whose generations overlap. Cannibalism, normally rare in social spiders, rose to 48% when spiders were reared at a high temperature. This may be evidence that volatile recognition pheromones suppress predatory instincts in social spiders.


Sign in / Sign up

Export Citation Format

Share Document