Systematic comparative study of computational methods for T-cell receptor sequencing data analysis

2017 ◽  
Vol 20 (1) ◽  
pp. 222-234 ◽  
Author(s):  
Saira Afzal ◽  
Irene Gil-Farina ◽  
Richard Gabriel ◽  
Shahzad Ahmad ◽  
Christof von Kalle ◽  
...  
2013 ◽  
Vol 10 (9) ◽  
pp. 813-814 ◽  
Author(s):  
Dmitriy A Bolotin ◽  
Mikhail Shugay ◽  
Ilgar Z Mamedov ◽  
Ekaterina V Putintseva ◽  
Maria A Turchaninova ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
William S DeWitt ◽  
Anajane Smith ◽  
Gary Schoch ◽  
John A Hansen ◽  
Frederick A Matsen ◽  
...  

The T cell receptor (TCR) repertoire encodes immune exposure history through the dynamic formation of immunological memory. Statistical analysis of repertoire sequencing data has the potential to decode disease associations from large cohorts with measured phenotypes. However, the repertoire perturbation induced by a given immunological challenge is conditioned on genetic background via major histocompatibility complex (MHC) polymorphism. We explore associations between MHC alleles, immune exposures, and shared TCRs in a large human cohort. Using a previously published repertoire sequencing dataset augmented with high-resolution MHC genotyping, our analysis reveals rich structure: striking imprints of common pathogens, clusters of co-occurring TCRs that may represent markers of shared immune exposures, and substantial variations in TCR-MHC association strength across MHC loci. Guided by atomic contacts in solved TCR:peptide-MHC structures, we identify sequence covariation between TCR and MHC. These insights and our analysis framework lay the groundwork for further explorations into TCR diversity.


2020 ◽  
Vol 124 (46) ◽  
pp. 10303-10310
Author(s):  
Samyuktha Ramesh ◽  
Soohyung Park ◽  
Melissa J. Call ◽  
Wonpil Im ◽  
Matthew E. Call

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi98-vi98
Author(s):  
Jasim Kada Benotmane ◽  
Jan Kückelhaus ◽  
Kevin Joseph ◽  
Jürgen Beck ◽  
Oliver Schnell ◽  
...  

Abstract The diversity to T cell responses and clonality in spatially heterogeneous glioblastoma is of paramount importance to explore underlying mechanisms of anti-tumor immunity. Spatial transcriptomics, a novel technology to map the transcriptional architecture, is technically limited to discover T cell receptor (TCR) sequences as the 3' approach lacks sufficient coverage. Here, we established SPTCR-seq, a method to capture TCR sequences followed by long-read sequencing to enable full-length TCR reconstruction. We performed 10X Visium spatial transcriptomics on 9 primary and recurrent glioblastoma with both 3’-sequencing and SPTCR-seq. For SPTCR-seq, we target enriched T cell receptor sequences by capturing by hybridization followed by Oxford-Nanopore long-read sequencing. The on-target rate was above 80% for captured TCR genes and spatial barcode was successfully aligned in more than 60%. IgBlast and MixCR were used to reconstruct the TCR and map T cell clonality. Within our recent developed spatial transcriptomic analysis framework (SPATA2), we build a novel toolbox, SPATA-Immunology, which enables integration of stRNA-sequencing data and spatially resolved TCR sequencing. Our data showed that clonal evolution of T cells is limited to regional areas underpinned by significant spatial autocorrelation coefficient (0.6-0.95, padj< 0.001). In the surrounding tumor cell spots, the recently described transcriptional program “reactive immune” (RI), was significantly enriched. Using spotlight, a computational approach to project scRNA-sequencing into the spatial space, we found a local enrichment of CD163 positive macrophages exclusively in areas of large T cell clonality. Imaging mass cytometry of a consecutive section confirmed the spatial confluence of T-cell infiltration and CD163-positive macrophages. Through DeepTCR we uncovered potential epitopes which correlate with T cell clonality and might help to discover novel targets for CART therapy. Spatial profiling of TCR sequences through SPTCR-seq is a powerful tool to investigate anti-tumor immunity in glioblastoma and allows to discover general and personalized targets for immunotherapy.


2020 ◽  
Vol 11 ◽  
Author(s):  
Qingshan Ni ◽  
Jianyang Zhang ◽  
Zihan Zheng ◽  
Gang Chen ◽  
Laura Christian ◽  
...  

BioTechniques ◽  
1997 ◽  
Vol 23 (1) ◽  
pp. 78-82 ◽  
Author(s):  
Enoch S. Daniel ◽  
Veeresh G. Gadag ◽  
David G. Haegert

2021 ◽  
Author(s):  
Milena Vujović ◽  
Paolo Marcatili ◽  
Benny Chain ◽  
Joseph Kaplinsky ◽  
Thomas Lars Andresen

AbstractWe propose TCRDivER, a global approach to T-cell repertoire comparison using diversity profiles sensitive to both clone size and sequence similarity. As immunotherapies improve, the long standing biological interest in connecting outcome with T cell receptor (TCR) repertoire status has become more urgent. Here we show that new insights can be extracted from high throughput repertoire sequencing data. Most current efforts focus on identification of immunisation-specific sequence motifs or on monitoring changes in frequency of individual clones. Applying TCRDivER to murine spleen samples shows it characterises an additional dimension of repertoire variation, beyond conventional diversity estimates, allowing distinction between immunised and non-immunised samples. We further apply TCRDivER to repertoires from human blood. In both cases we show characteristic relationships between repertoire features. These reveal biologically interpretable relationships between sequence similarity and clonal expansions. We thereby demonstrate a new tool for investigation in clinical and research applications.


Author(s):  
Pieter Meysman ◽  
Anna Postovskaya ◽  
Nicolas De Neuter ◽  
Benson Ogunjimi ◽  
Kris Laukens

Much is still not understood about the human adaptive immune response to SARS-CoV-2, the causative agent of COVID-19. In this paper, we demonstrate the use of machine learning to classify SARS-CoV-2 epitope specific T-cell clonotypes in T-cell receptor (TCR) sequencing data. We apply these models to public TCR data and show how they can be used to study T-cell longitudinal profiles in COVID-19 patients to characterize how the adaptive immune system reacts to the SARS-CoV-2 virus. Our findings confirm prior knowledge that SARS-CoV-2 reactive T-cell diversity increases over the course of disease progression. However our results show a difference between those T cells that react to epitope unique to SARS-CoV-2, which show a more prominent increase, and those T cells that react to epitopes common to other coronaviruses, which begin at a higher baseline.


Author(s):  
Mukta Dutta ◽  
Mariya Smit ◽  
Heather Collins ◽  
Anjali Malge ◽  
Steve Anderson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document