scholarly journals Atlas: automatic modeling of regulation of bacterial gene expression and metabolism using rule-based languages

Author(s):  
Rodrigo Santibáñez ◽  
Daniel Garrido ◽  
Alberto J M Martin

Abstract Motivation Cells are complex systems composed of hundreds of genes whose products interact to produce elaborated behaviors. To control such behaviors, cells rely on transcription factors to regulate gene expression, and gene regulatory networks (GRNs) are employed to describe and understand such behavior. However, GRNs are static models, and dynamic models are difficult to obtain due to their size, complexity, stochastic dynamics and interactions with other cell processes. Results We developed Atlas, a Python software that converts genome graphs and gene regulatory, interaction and metabolic networks into dynamic models. The software employs these biological networks to write rule-based models for the PySB framework. The underlying method is a divide-and-conquer strategy to obtain sub-models and combine them later into an ensemble model. To exemplify the utility of Atlas, we used networks of varying size and complexity of Escherichia coli and evaluated in silico modifications, such as gene knockouts and the insertion of promoters and terminators. Moreover, the methodology could be applied to the dynamic modeling of natural and synthetic networks of any bacteria. Availability and implementation Code, models and tutorials are available online (https://github.com/networkbiolab/atlas). Supplementary information Supplementary data are available at Bioinformatics online.

2019 ◽  
Vol 36 (1) ◽  
pp. 197-204 ◽  
Author(s):  
Xin Zhou ◽  
Xiaodong Cai

Abstract Motivation Gene regulatory networks (GRNs) of the same organism can be different under different conditions, although the overall network structure may be similar. Understanding the difference in GRNs under different conditions is important to understand condition-specific gene regulation. When gene expression and other relevant data under two different conditions are available, they can be used by an existing network inference algorithm to estimate two GRNs separately, and then to identify the difference between the two GRNs. However, such an approach does not exploit the similarity in two GRNs, and may sacrifice inference accuracy. Results In this paper, we model GRNs with the structural equation model (SEM) that can integrate gene expression and genetic perturbation data, and develop an algorithm named fused sparse SEM (FSSEM), to jointly infer GRNs under two conditions, and then to identify difference of the two GRNs. Computer simulations demonstrate that the FSSEM algorithm outperforms the approaches that estimate two GRNs separately. Analysis of a dataset of lung cancer and another dataset of gastric cancer with FSSEM inferred differential GRNs in cancer versus normal tissues, whose genes with largest network degrees have been reported to be implicated in tumorigenesis. The FSSEM algorithm provides a valuable tool for joint inference of two GRNs and identification of the differential GRN under two conditions. Availability and implementation The R package fssemR implementing the FSSEM algorithm is available at https://github.com/Ivis4ml/fssemR.git. It is also available on CRAN. Supplementary information Supplementary data are available at Bioinformatics online.


Computation ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 48
Author(s):  
Georgios N. Dimitrakopoulos

In Systems Biology, the complex relationships between different entities in the cells are modeled and analyzed using networks. Towards this aim, a rich variety of gene regulatory network (GRN) inference algorithms has been developed in recent years. However, most algorithms rely solely on gene expression data to reconstruct the network. Due to possible expression profile similarity, predictions can contain connections between biologically unrelated genes. Therefore, previously known biological information should also be considered by computational methods to obtain more consistent results, such as experimentally validated interactions between transcription factors and target genes. In this work, we propose XGBoost for gene regulatory networks (XGRN), a supervised algorithm, which combines gene expression data with previously known interactions for GRN inference. The key idea of our method is to train a regression model for each known interaction of the network and then utilize this model to predict new interactions. The regression is performed by XGBoost, a state-of-the-art algorithm using an ensemble of decision trees. In detail, XGRN learns a regression model based on gene expression of the two interactors and then provides predictions using as input the gene expression of other candidate interactors. Application on benchmark datasets and a real large single-cell RNA-Seq experiment resulted in high performance compared to other unsupervised and supervised methods, demonstrating the ability of XGRN to provide reliable predictions.


Author(s):  
Anastasiya Belyaeva ◽  
Chandler Squires ◽  
Caroline Uhler

Abstract Summary Designing interventions to control gene regulation necessitates modeling a gene regulatory network by a causal graph. Currently, large-scale gene expression datasets from different conditions, cell types, disease states, and developmental time points are being collected. However, application of classical causal inference algorithms to infer gene regulatory networks based on such data is still challenging, requiring high sample sizes and computational resources. Here, we describe an algorithm that efficiently learns the differences in gene regulatory mechanisms between different conditions. Our difference causal inference (DCI) algorithm infers changes (i.e. edges that appeared, disappeared, or changed weight) between two causal graphs given gene expression data from the two conditions. This algorithm is efficient in its use of samples and computation since it infers the differences between causal graphs directly without estimating each possibly large causal graph separately. We provide a user-friendly Python implementation of DCI and also enable the user to learn the most robust difference causal graph across different tuning parameters via stability selection. Finally, we show how to apply DCI to single-cell RNA-seq data from different conditions and cell states, and we also validate our algorithm by predicting the effects of interventions. Availability and implementation Python package freely available at http://uhlerlab.github.io/causaldag/dci. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 47 (1) ◽  
pp. 447-467 ◽  
Author(s):  
David L. Shis ◽  
Matthew R. Bennett, ◽  
Oleg A. Igoshin

The ability of bacterial cells to adjust their gene expression program in response to environmental perturbation is often critical for their survival. Recent experimental advances allowing us to quantitatively record gene expression dynamics in single cells and in populations coupled with mathematical modeling enable mechanistic understanding on how these responses are shaped by the underlying regulatory networks. Here, we review how the combination of local and global factors affect dynamical responses of gene regulatory networks. Our goal is to discuss the general principles that allow extrapolation from a few model bacteria to less understood microbes. We emphasize that, in addition to well-studied effects of network architecture, network dynamics are shaped by global pleiotropic effects and cell physiology.


Author(s):  
Yuelei Zhang ◽  
Xiao Chang ◽  
Xiaoping Liu

Abstract Motivation Inferring gene regulatory networks (GRNs) from high-throughput data is an important and challenging problem in systems biology. Although numerous GRN methods have been developed, most have focused on the verification of the specific dataset. However, it is difficult to establish directed topological networks that are both suitable for time-series and non-time-series datasets due to the complexity and diversity of biological networks. Results Here, we proposed a novel method, GNIPLR (Gene networks inference based on projection and lagged regression) to infer GRNs from time-series or non-time-series gene expression data. GNIPLR projected gene data twice using the LASSO projection (LSP) algorithm and the linear projection (LP) approximation to produce a linear and monotonous pseudo-time series, and then determined the direction of regulation in combination with lagged regression analyses. The proposed algorithm was validated using simulated and real biological data. Moreover, we also applied the GNIPLR algorithm to the liver hepatocellular carcinoma (LIHC) and bladder urothelial carcinoma (BLCA) cancer expression datasets. These analyses revealed significantly higher accuracy and AUC values than other popular methods. Availabilityand implementation The GNIPLR tool is freely available at https://github.com/zyllluck/GNIPLR. Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Author(s):  
Rajni Jaiswal ◽  
Sabin Dhakal ◽  
Shaurya Jauhari

ABSTRACTReconstruction of biological networks for topological analyses helps in correlation identification between various types of biomarkers. These networks have been vital components of System Biology in present era. Genes are the basic physical and structural unit of heredity. Genes act as instructions to make molecules called proteins. Alterations in the normal sequence of these genes are the root cause of various diseases and cancer is the prominent example disease caused by gene alteration or mutation. These slight alterations can be detected by microarray analysis. The high throughput data obtained by microarray experiments aid scientists in reconstructing cancer specific gene regulatory networks. The purpose of experiment performed is to find out the overlapping of the gene expression profiles of breast and lung cancer data, so that the common hub genes can be sifted and utilized as drug targets which could be used for the treatment of diseased conditions. In this study, first the differentially expressed genes have been identified (lung cancer and breast cancer), followed by a filtration approach and most significant genes are chosen using paired t-test and gene regulatory network construction. The obtained result has been checked and validated with the available databases and literature.


Author(s):  
Andre S. Ribeiro ◽  
John J. Grefenstette ◽  
Stuart A. Kauffman

We present a recently developed modeling strategy of gene regulatory networks (GRN) that uses the delayed stochastic simulation algorithm to drive its dynamics. First, we present experimental evidence that led us to use this strategy. Next, we describe the stochastic simulation algorithm (SSA), and the delayed SSA, able to simulate time-delayed events. We then present a model of single gene expression. From this, we present the general modeling strategy of GRN. Specific applications of the approach are presented, beginning with the model of single gene expression which mimics a recent experimental measurement of gene expression at single-protein level, to validate our modeling strategy. We also model a toggle switch with realistic noise and delays, used in cells as differentiation pathway switches. We show that its dynamics differs from previous modeling strategies predictions. As a final example, we model the P53-Mdm2 feedback loop, whose malfunction is associated to 50% of cancers, and can induce cells apoptosis. In the end, we briefly discuss some issues in modeling the evolution of GRNs, and outline some directions for further research.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mika J. Välimäki ◽  
Robert S. Leigh ◽  
Sini M. Kinnunen ◽  
Alexander R. March ◽  
Ana Hernández de Sande ◽  
...  

AbstractBackgroundPharmacological modulation of cell fate decisions and developmental gene regulatory networks holds promise for the treatment of heart failure. Compounds that target tissue-specific transcription factors could overcome non-specific effects of small molecules and lead to the regeneration of heart muscle following myocardial infarction. Due to cellular heterogeneity in the heart, the activation of gene programs representing specific atrial and ventricular cardiomyocyte subtypes would be highly desirable. Chemical compounds that modulate atrial and ventricular cell fate could be used to improve subtype-specific differentiation of endogenous or exogenously delivered progenitor cells in order to promote cardiac regeneration.MethodsTranscription factor GATA4-targeted compounds that have previously shown in vivo efficacy in cardiac injury models were tested for stage-specific activation of atrial and ventricular reporter genes in differentiating pluripotent stem cells using a dual reporter assay. Chemically induced gene expression changes were characterized by qRT-PCR, global run-on sequencing (GRO-seq) and immunoblotting, and the network of cooperative proteins of GATA4 and NKX2-5 were further explored by the examination of the GATA4 and NKX2-5 interactome by BioID. Reporter gene assays were conducted to examine combinatorial effects of GATA-targeted compounds and bromodomain and extraterminal domain (BET) inhibition on chamber-specific gene expression.ResultsGATA4-targeted compounds 3i-1000 and 3i-1103 were identified as differential modulators of atrial and ventricular gene expression. More detailed structure-function analysis revealed a distinct subclass of GATA4/NKX2-5 inhibitory compounds with an acetyl lysine-like domain that contributed to ventricular cells (%Myl2-eGFP+). Additionally, BioID analysis indicated broad interaction between GATA4 and BET family of proteins, such as BRD4. This indicated the involvement of epigenetic modulators in the regulation of GATA-dependent transcription. In this line, reporter gene assays with combinatorial treatment of 3i-1000 and the BET bromodomain inhibitor (+)-JQ1 demonstrated the cooperative role of GATA4 and BRD4 in the modulation of chamber-specific cardiac gene expression.ConclusionsCollectively, these results indicate the potential for therapeutic alteration of cell fate decisions and pathological gene regulatory networks by GATA4-targeted compounds modulating chamber-specific transcriptional programs in multipotent cardiac progenitor cells and cardiomyocytes. The compound scaffolds described within this study could be used to develop regenerative strategies for myocardial regeneration.


Sign in / Sign up

Export Citation Format

Share Document