scholarly journals DriverGroup: a novel method for identifying driver gene groups

2020 ◽  
Vol 36 (Supplement_2) ◽  
pp. i583-i591
Author(s):  
Vu V H Pham ◽  
Lin Liu ◽  
Cameron P Bracken ◽  
Gregory J Goodall ◽  
Jiuyong Li ◽  
...  

Abstract Motivation Identifying cancer driver genes is a key task in cancer informatics. Most existing methods are focused on individual cancer drivers which regulate biological processes leading to cancer. However, the effect of a single gene may not be sufficient to drive cancer progression. Here, we hypothesize that there are driver gene groups that work in concert to regulate cancer, and we develop a novel computational method to detect those driver gene groups. Results We develop a novel method named DriverGroup to detect driver gene groups by using gene expression and gene interaction data. The proposed method has three stages: (i) constructing the gene network, (ii) discovering critical nodes of the constructed network and (iii) identifying driver gene groups based on the discovered critical nodes. Before evaluating the performance of DriverGroup in detecting cancer driver groups, we firstly assess its performance in detecting the influence of gene groups, a key step of DriverGroup. The application of DriverGroup to DREAM4 data demonstrates that it is more effective than other methods in detecting the regulation of gene groups. We then apply DriverGroup to the BRCA dataset to identify driver groups for breast cancer. The identified driver groups are promising as several group members are confirmed to be related to cancer in literature. We further use the predicted driver groups in survival analysis and the results show that the survival curves of patient subpopulations classified using the predicted driver groups are significantly differentiated, indicating the usefulness of DriverGroup. Availability and implementation DriverGroup is available at https://github.com/pvvhoang/DriverGroup Supplementary information Supplementary data are available at Bioinformatics online.

2020 ◽  
Author(s):  
Vu VH Pham ◽  
Lin Liu ◽  
Cameron P Bracken ◽  
Gregory J Goodall ◽  
Jiuyong Li ◽  
...  

AbstractMotivationIdentifying cancer driver genes is a key task in cancer informatics. Most exisiting methods are focused on individual cancer drivers which regulate biological processes leading to cancer. However, the effect of a single gene may not be sufficient to drive cancer progression. Here, we hypothesise that there are driver gene groups that work in concert to regulate cancer and we develop a novel computational method to detect those driver gene groups.ResultsWe develop a novel method named DriverGroup to detect driver gene groups by using gene expression and gene interaction data. The proposed method has three stages: (1) Constructing the gene network, (2) Discovering critical nodes of the constructed network, and (3) Identifying driver gene groups based on the discovered critical nodes. Before evaluating the performance of DriverGroup in detecting cancer driver groups, we firstly assess its performance in detecting the influence of gene groups, a key step of DriverGroup. The application of DriverGroup to DREAM4 data demonstrates that it is more effective than other methods in detecting the regulation of gene groups. We then apply DriverGroup to the BRCA dataset to identify coding and non-coding driver groups for breast cancer. The identified driver groups are promising as several group members are confirmed to be related to cancer in literature. We further use the predicted driver groups in survival analysis and the results show that the survival curves of patient subpopulations classified using the predicted driver groups are significantly differentiated, indicating the usefulness of DriverGroup.Availability and implementationDriverGroup is available at https://github.com/pvvhoang/[email protected] informationSupplementary data are available at Bioinformatics online.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ege Ülgen ◽  
O. Uğur Sezerman

Abstract Background Cancer develops due to “driver” alterations. Numerous approaches exist for predicting cancer drivers from cohort-scale genomics data. However, methods for personalized analysis of driver genes are underdeveloped. In this study, we developed a novel personalized/batch analysis approach for driver gene prioritization utilizing somatic genomics data, called driveR. Results Combining genomics information and prior biological knowledge, driveR accurately prioritizes cancer driver genes via a multi-task learning model. Testing on 28 different datasets, this study demonstrates that driveR performs adequately, achieving a median AUC of 0.684 (range 0.651–0.861) on the 28 batch analysis test datasets, and a median AUC of 0.773 (range 0–1) on the 5157 personalized analysis test samples. Moreover, it outperforms existing approaches, achieving a significantly higher median AUC than all of MutSigCV (Wilcoxon rank-sum test p < 0.001), DriverNet (p < 0.001), OncodriveFML (p < 0.001) and MutPanning (p < 0.001) on batch analysis test datasets, and a significantly higher median AUC than DawnRank (p < 0.001) and PRODIGY (p < 0.001) on personalized analysis datasets. Conclusions This study demonstrates that the proposed method is an accurate and easy-to-utilize approach for prioritizing driver genes in cancer genomes in personalized or batch analyses. driveR is available on CRAN: https://cran.r-project.org/package=driveR.


2020 ◽  
Author(s):  
Ege Ülgen ◽  
O. Uğur Sezerman

AbstractCancer develops due to “driver” alterations. Numerous approaches exist for predicting cancer drivers from cohort-scale genomic data. However, methods for personalized analysis of driver genes are underdeveloped.In this study, we developed a novel personalized/batch analysis approach for driver gene prioritization utilizing somatic genomic data, called driveR. Combining genomic information and prior biological knowledge, driveR accurately prioritizes cancer driver genes via a multi-task learning model.Testing on 28 different datasets, this study demonstrates that driveR performs adequately, outperforms existing approaches, and is an accurate and easy-to-utilize approach for prioritizing driver genes in cancer genomes. driveR is available on CRAN: https://cran.r-project.org/package=driveR.


2020 ◽  
Author(s):  
Vu VH Pham ◽  
Lin Liu ◽  
Cameron P Bracken ◽  
Thin Nguyen ◽  
Gregory J Goodall ◽  
...  

AbstractMotivationUnravelling cancer driver genes is important in cancer research. Although computational methods have been developed to identify cancer drivers, most of them detect cancer drivers at population level. However, two patients who have the same cancer type and receive the same treatment may have different outcomes because each patient has a different genome and their disease might be driven by different driver genes. Therefore new methods are being developed for discovering cancer drivers at individual level, but existing personalised methods only focus on coding drivers while microRNAs (miRNAs) have been shown to drive cancer progression as well. Thus, novel methods are required to discover both coding and miRNA cancer drivers at individual level.ResultsWe propose the novel method, pDriver, to discover personalised cancer drivers. pDriver includes two stages: (1) Constructing gene networks for each cancer patient and (2) Discovering cancer drivers for each patient based on the constructed gene networks. To demonstrate the effectiveness of pDriver, we have applied it to five TCGA cancer datasets and compared it with the state-of-the-art methods. The result indicates that pDriver is more effective than other methods. Furthermore, pDriver can also detect miRNA cancer drivers and most of them have been confirmed to be associated with cancer by literature. We further analyse the predicted personalised drivers for breast cancer patients and the result shows that they are significantly enriched in many GO processes and KEGG pathways involved in breast cancer.Availability and implementationpDriver is available at https://github.com/pvvhoang/[email protected] informationSupplementary data are available at Bioinformatics online.


Author(s):  
Martin Pirkl ◽  
Niko Beerenwinkel

Abstract Motivation Cancer is one of the most prevalent diseases in the world. Tumors arise due to important genes changing their activity, e.g. when inhibited or over-expressed. But these gene perturbations are difficult to observe directly. Molecular profiles of tumors can provide indirect evidence of gene perturbations. However, inferring perturbation profiles from molecular alterations is challenging due to error-prone molecular measurements and incomplete coverage of all possible molecular causes of gene perturbations. Results We have developed a novel mathematical method to analyze cancer driver genes and their patient-specific perturbation profiles. We combine genetic aberrations with gene expression data in a causal network derived across patients to infer unobserved perturbations. We show that our method can predict perturbations in simulations, CRISPR perturbation screens and breast cancer samples from The Cancer Genome Atlas. Availability and implementation The method is available as the R-package nempi at https://github.com/cbg-ethz/nempi and http://bioconductor.org/packages/nempi. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Shu-Hsuan Liu ◽  
Pei-Chun Shen ◽  
Chen-Yang Chen ◽  
An-Ni Hsu ◽  
Yi-Chun Cho ◽  
...  

Abstract An integrative multi-omics database is needed urgently, because focusing only on analysis of one-dimensional data falls far short of providing an understanding of cancer. Previously, we presented DriverDB, a cancer driver gene database that applies published bioinformatics algorithms to identify driver genes/mutations. The updated DriverDBv3 database (http://ngs.ym.edu.tw/driverdb) is designed to interpret cancer omics’ sophisticated information with concise data visualization. To offer diverse insights into molecular dysregulation/dysfunction events, we incorporated computational tools to define CNV and methylation drivers. Further, four new features, CNV, Methylation, Survival, and miRNA, allow users to explore the relations from two perspectives in the ‘Cancer’ and ‘Gene’ sections. The ‘Survival’ panel offers not only significant survival genes, but gene pairs synergistic effects determine. A fresh function, ‘Survival Analysis’ in ‘Customized-analysis,’ allows users to investigate the co-occurring events in user-defined gene(s) by mutation status or by expression in a specific patient group. Moreover, we redesigned the web interface and provided interactive figures to interpret cancer omics’ sophisticated information, and also constructed a Summary panel in the ‘Cancer’ and ‘Gene’ sections to visualize the features on multi-omics levels concisely. DriverDBv3 seeks to improve the study of integrative cancer omics data by identifying driver genes and contributes to cancer biology.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Antonio Colaprico ◽  
Catharina Olsen ◽  
Matthew H. Bailey ◽  
Gabriel J. Odom ◽  
Thilde Terkelsen ◽  
...  

AbstractCancer driver gene alterations influence cancer development, occurring in oncogenes, tumor suppressors, and dual role genes. Discovering dual role cancer genes is difficult because of their elusive context-dependent behavior. We define oncogenic mediators as genes controlling biological processes. With them, we classify cancer driver genes, unveiling their roles in cancer mechanisms. To this end, we present Moonlight, a tool that incorporates multiple -omics data to identify critical cancer driver genes. With Moonlight, we analyze 8000+ tumor samples from 18 cancer types, discovering 3310 oncogenic mediators, 151 having dual roles. By incorporating additional data (amplification, mutation, DNA methylation, chromatin accessibility), we reveal 1000+ cancer driver genes, corroborating known molecular mechanisms. Additionally, we confirm critical cancer driver genes by analysing cell-line datasets. We discover inactivation of tumor suppressors in intron regions and that tissue type and subtype indicate dual role status. These findings help explain tumor heterogeneity and could guide therapeutic decisions.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Xiaobao Dong ◽  
Dandan Huang ◽  
Xianfu Yi ◽  
Shijie Zhang ◽  
Zhao Wang ◽  
...  

AbstractMutation-specific effects of cancer driver genes influence drug responses and the success of clinical trials. We reasoned that these effects could unbalance the distribution of each mutation across different cancer types, as a result, the cancer preference can be used to distinguish the effects of the causal mutation. Here, we developed a network-based framework to systematically measure cancer diversity for each driver mutation. We found that half of the driver genes harbor cancer type-specific and pancancer mutations simultaneously, suggesting that the pervasive functional heterogeneity of the mutations from even the same driver gene. We further demonstrated that the specificity of the mutations could influence patient drug responses. Moreover, we observed that diversity was generally increased in advanced tumors. Finally, we scanned potentially novel cancer driver genes based on the diversity spectrum. Diversity spectrum analysis provides a new approach to define driver mutations and optimize off-label clinical trials.


2017 ◽  
Author(s):  
Luis Zapata ◽  
Hana Susak ◽  
Oliver Drechsel ◽  
Marc R. Friedländer ◽  
Xavier Estivill ◽  
...  

AbstractTumors are composed of an evolving population of cells subjected to tissue-specific selection, which fuels tumor heterogeneity and ultimately complicates cancer driver gene identification. Here, we integrate cancer cell fraction, population recurrence, and functional impact of somatic mutations as signatures of selection into a Bayesian inference model for driver prediction. In an in-depth benchmark, we demonstrate that our model, cDriver, outperforms competing methods when analyzing solid tumors, hematological malignancies, and pan-cancer datasets. Applying cDriver to exome sequencing data of 21 cancer types from 6,870 individuals revealed 98 unreported tumor type-driver gene connections. These novel connections are highly enriched for chromatin-modifying proteins, hinting at a universal role of chromatin regulation in cancer etiology. Although infrequently mutated as single genes, we show that chromatin modifiers are altered in a large fraction of cancer patients. In summary, we demonstrate that integration of evolutionary signatures is key for identifying mutational driver genes, thereby facilitating the discovery of novel therapeutic targets for cancer treatment.


2018 ◽  
Author(s):  
Siming Zhao ◽  
Jun Liu ◽  
Pranav Nanga ◽  
Yuwen Liu ◽  
A. Ercument Cicek ◽  
...  

AbstractIdentifying driver genes is a central problem in cancer biology, and many methods have been developed to identify driver genes from somatic mutation data. However, existing methods either lack explicit statistical models, or rely on very simple models that do not capture complex features in somatic mutations of driver genes. Here, we present driverMAPS (Model-based Analysis of Positive Selection), a more comprehensive model-based approach to driver gene identification. This new method explicitly models, at the single-base level, the effects of positive selection in cancer driver genes as well as highly heterogeneous background mutational process. Its selection model captures elevated mutation rates in functionally important sites using multiple external annotations, as well as spatial clustering of mutations. Its background mutation model accounts for both known covariates and unexplained local variation. Simulations under realistic evolutionary models demonstrate that driverMAPS greatly improves the power of driver gene detection over state-of-the-art approaches. Applying driverMAPS to TCGA data across 20 tumor types identified 159 new potential driver genes. Cross-referencing this list with data from external sources strongly supports these findings. The novel genes include the mRNA methytransferases METTL3-METTL14, and we experimentally validated METTL3 as a potential tumor suppressor gene in bladder cancer. Our results thus provide strong support to the emerging hypothesis that mRNA modification is an important biological process underlying tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document