scholarly journals scGEAToolbox: a Matlab toolbox for single-cell RNA sequencing data analysis

Author(s):  
James J Cai

Abstract Motivation Single-cell RNA sequencing (scRNA-seq) technology has revolutionized the way research is done in biomedical sciences. It provides an unprecedented level of resolution across individual cells for studying cell heterogeneity and gene expression variability. Analyzing scRNA-seq data is challenging though, due to the sparsity and high dimensionality of the data. Results I developed scGEAToolbox—a Matlab toolbox for scRNA-seq data analysis. It contains a comprehensive set of functions for data normalization, feature selection, batch correction, imputation, cell clustering, trajectory/pseudotime analysis, and network construction, which can be combined and integrated to building custom workflow. While most of the functions are implemented in native Matlab, wrapper functions are provided to allow users to call the “third-party” tools developed in Matlab or other languages. Furthermore, scGEAToolbox is equipped with sophisticated graphical user interfaces (GUIs) generated with App Designer, making it an easy-to-use application for quick data processing. Availability https://github.com/jamesjcai/scGEAToolbox Supplementary information Supplementary data are available at Bioinformatics online.

2019 ◽  
Author(s):  
James J. Cai

AbstractMotivationThe recent development of single-cell technologies, especially single-cell RNA sequencing (scRNA-seq), provides an unprecedented level of resolution to the cell type heterogeneity. It also enables the study of gene expression variability across individual cells within a homogenous cell population. Feature selection algorithms have been used to select biologically meaningful genes while controlling for sampling noise. An easy-to-use application for feature selection on scRNA-seq data requires integration of functions for data filtering, normalization, visualization, and enrichment analyses. Graphic user interfaces (GUIs) are desired for such an application.ResultsWe used native Matlab and App Designer to develop scGEApp for feature selection on singlecell gene expression data. We specifically designed a new feature selection algorithm based on the 3D spline fitting of expression mean (μ), coefficient of variance (CV), and dropout rate (rdrop), making scGEApp a unique tool for feature selection on scRNA-seq data. Our method can be applied to single-sample or two-sample scRNA-seq data, identify feature genes, e.g., those with unexpectedly high CV for given μ and rdrop of those genes, or genes with the most feature changes. Users can operate scGEApp through GUIs to use the full spectrum of functions including normalization, batch effect correction, imputation, visualization, feature selection, and downstream analyses with GSEA and GOrilla.Availabilityhttps://github.com/jamesjcai/scGEAppContact:[email protected] informationSupplementary data are available at Bioinformatics online.


2020 ◽  
Vol 200 ◽  
pp. 108204 ◽  
Author(s):  
Andrew P. Voigt ◽  
S. Scott Whitmore ◽  
Nicholas D. Lessing ◽  
Adam P. DeLuca ◽  
Budd A. Tucker ◽  
...  

2019 ◽  
Vol 36 (7) ◽  
pp. 2291-2292 ◽  
Author(s):  
Saskia Freytag ◽  
Ryan Lister

Abstract Summary Due to the scale and sparsity of single-cell RNA-sequencing data, traditional plots can obscure vital information. Our R package schex overcomes this by implementing hexagonal binning, which has the additional advantages of improving speed and reducing storage for resulting plots. Availability and implementation schex is freely available from Bioconductor via http://bioconductor.org/packages/release/bioc/html/schex.html and its development version can be accessed on GitHub via https://github.com/SaskiaFreytag/schex. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Alemu Takele Assefa ◽  
Jo Vandesompele ◽  
Olivier Thas

SummarySPsimSeq is a semi-parametric simulation method for bulk and single cell RNA sequencing data. It simulates data from a good estimate of the actual distribution of a given real RNA-seq dataset. In contrast to existing approaches that assume a particular data distribution, our method constructs an empirical distribution of gene expression data from a given source RNA-seq experiment to faithfully capture the data characteristics of real data. Importantly, our method can be used to simulate a wide range of scenarios, such as single or multiple biological groups, systematic variations (e.g. confounding batch effects), and different sample sizes. It can also be used to simulate different gene expression units resulting from different library preparation protocols, such as read counts or UMI counts.Availability and implementationThe R package and associated documentation is available from https://github.com/CenterForStatistics-UGent/SPsimSeq.Supplementary informationSupplementary data are available at bioRχiv online.


2019 ◽  
Vol 35 (22) ◽  
pp. 4827-4829 ◽  
Author(s):  
Xiao-Fei Zhang ◽  
Le Ou-Yang ◽  
Shuo Yang ◽  
Xing-Ming Zhao ◽  
Xiaohua Hu ◽  
...  

Abstract Summary Imputation of dropout events that may mislead downstream analyses is a key step in analyzing single-cell RNA-sequencing (scRNA-seq) data. We develop EnImpute, an R package that introduces an ensemble learning method for imputing dropout events in scRNA-seq data. EnImpute combines the results obtained from multiple imputation methods to generate a more accurate result. A Shiny application is developed to provide easier implementation and visualization. Experiment results show that EnImpute outperforms the individual state-of-the-art methods in almost all situations. EnImpute is useful for correcting the noisy scRNA-seq data before performing downstream analysis. Availability and implementation The R package and Shiny application are available through Github at https://github.com/Zhangxf-ccnu/EnImpute. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Abha S Bais ◽  
Dennis Kostka

Abstract Motivation Single-cell RNA sequencing (scRNA-seq) technologies enable the study of transcriptional heterogeneity at the resolution of individual cells and have an increasing impact on biomedical research. However, it is known that these methods sometimes wrongly consider two or more cells as single cells, and that a number of so-called doublets is present in the output of such experiments. Treating doublets as single cells in downstream analyses can severely bias a study’s conclusions, and therefore computational strategies for the identification of doublets are needed. Results With scds, we propose two new approaches for in silico doublet identification: Co-expression based doublet scoring (cxds) and binary classification based doublet scoring (bcds). The co-expression based approach, cxds, utilizes binarized (absence/presence) gene expression data and, employing a binomial model for the co-expression of pairs of genes, yields interpretable doublet annotations. bcds, on the other hand, uses a binary classification approach to discriminate artificial doublets from original data. We apply our methods and existing computational doublet identification approaches to four datasets with experimental doublet annotations and find that our methods perform at least as well as the state of the art, at comparably little computational cost. We observe appreciable differences between methods and across datasets and that no approach dominates all others. In summary, scds presents a scalable, competitive approach that allows for doublet annotation of datasets with thousands of cells in a matter of seconds. Availability and implementation scds is implemented as a Bioconductor R package (doi: 10.18129/B9.bioc.scds). Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Tamim Abdelaal ◽  
Jeroen Eggermont ◽  
Thomas Höllt ◽  
Ahmed Mahfouz ◽  
Marcel J.T. Reinders ◽  
...  

SummaryThe ever-increasing number of analyzed cells in Single-cell RNA sequencing (scRNA-seq) experiments imposes several challenges on the data analysis. Current analysis methods lack scalability to large datasets hampering interactive visual exploration of the data. We present Cytosplore-Transcriptomics, a framework to analyze scRNA-seq data, including data preprocessing, visualization and downstream analysis. At its core, it uses a hierarchical, manifold preserving representation of the data that allows the inspection and annotation of scRNA-seq data at different levels of detail. Consequently, Cytosplore-Transcriptomics provides interactive analysis of the data using low-dimensional visualizations that scales to millions of cells.AvailabilityCytosplore-Transcriptomics can be freely downloaded from [email protected]


Sign in / Sign up

Export Citation Format

Share Document