scholarly journals Current progress, challenges, and future prospects of testis organoids†

Author(s):  
Tat-Chuan Cham ◽  
Xiongbiao Chen ◽  
Ali Honaramooz

Abstract Spermatogenic failure is believed to be a major cause of male infertility. The establishment of a testis organoid model would facilitate the study of such pathological mechanisms and open the possibility of male fertility preservation. Because of the complex structures and cellular events occurring within the testis, the establishment of a compartmentalized testis organoid with a complete spermatogenic cycle remains a challenge in all species. Since the late 20th century, a great variety of scaffold-based and scaffold-free testis cell culture systems have been established to recapitulate de novo testis organogenesis and in vitro spermatogenesis. The utilization of the hydrogel scaffolds provides a 3D microenvironment for testis cell growth and development, facilitating the reconstruction of de novo testis tissue-like structures and spermatogenic differentiation. Using a combination of different strategies, including the use of various scaffolding biomaterials, the incorporation of the living cells with high self-assembling capacity, and the integration of the advanced fabrication techniques, a scaffold-based testis organoid with a compartmentalized structure that supports in vitro spermatogenesis may be achieved. This article briefly reviews the current progress in the development of scaffold-based testis organoids while focusing on the scaffolding biomaterials (hydrogels), cell sources, and scaffolding approaches. Key challenges in current organoid studies are also discussed along with recommendations for future research.

Science ◽  
2018 ◽  
Vol 362 (6415) ◽  
pp. 705-709 ◽  
Author(s):  
Hao Shen ◽  
Jorge A. Fallas ◽  
Eric Lynch ◽  
William Sheffler ◽  
Bradley Parry ◽  
...  

We describe a general computational approach to designing self-assembling helical filaments from monomeric proteins and use this approach to design proteins that assemble into micrometer-scale filaments with a wide range of geometries in vivo and in vitro. Cryo–electron microscopy structures of six designs are close to the computational design models. The filament building blocks are idealized repeat proteins, and thus the diameter of the filaments can be systematically tuned by varying the number of repeat units. The assembly and disassembly of the filaments can be controlled by engineered anchor and capping units built from monomers lacking one of the interaction surfaces. The ability to generate dynamic, highly ordered structures that span micrometers from protein monomers opens up possibilities for the fabrication of new multiscale metamaterials.


2018 ◽  
Author(s):  
Molly M. Sheehan ◽  
Michael S. Magaraci ◽  
Ivan A. Kuznetsov ◽  
Joshua A. Mancini ◽  
Goutham Kodali ◽  
...  

Abstract:We report the rational construction of a de novo-designed biliverdin-binding protein by first principles of protein design, informed by energy minimization modeling in Rosetta. The self-assembling tetrahelical bundles bind biliverdin IXa (BV) cofactor auto-catalytically in vitro, similar to photosensory proteins that bind BV (and related bilins, or linear tetrapyrroles) despite lacking sequence and structural homology to the natural counterparts. Upon identifying a suitable site for cofactor ligation to the protein scaffold, stepwise placement of residues stabilized BV within the hydrophobic core. Rosetta modeling was used in the absence of a high-resolution structure to define the structure-function of the binding pocket. Holoprotein formation indeed stabilized BV, resulting in increased far-red BV fluorescence. By removing segments extraneous to cofactor stabilization or bundle stability, the initial 15-kilodalton de novo-designed fluorescence-activating protein (“dFP”) was truncated without altering its optical properties, down to a miniature 10-kilodalton “mini,” in which the protein scaffold extends only a half-heptad repeat beyond the hypothetical position of the bilin D-ring. This work demonstrates how highly compact holoprotein fluorochromes can be rationally constructed using de novo protein design technology and natural cofactors.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2641-2648 ◽  
Author(s):  
Linda T. Vo ◽  
George Q. Daley

Abstract Generating human hematopoietic stem cells (HSCs) from autologous tissues, when coupled with genome editing technologies, is a promising approach for cellular transplantation therapy and for in vitro disease modeling, drug discovery, and toxicology studies. Human pluripotent stem cells (hPSCs) represent a potentially inexhaustible supply of autologous tissue; however, to date, directed differentiation from hPSCs has yielded hematopoietic cells that lack robust and sustained multilineage potential. Cellular reprogramming technologies represent an alternative platform for the de novo generation of HSCs via direct conversion from heterologous cell types. In this review, we discuss the latest advancements in HSC generation by directed differentiation from hPSCs or direct conversion from somatic cells, and highlight their applications in research and prospects for therapy.


Author(s):  
Aleksandar Antanasijevic ◽  
George Ueda ◽  
Philip JM Brouwer ◽  
Jeffrey Copps ◽  
Deli Huang ◽  
...  

AbstractTwo-component, self-assembling nanoparticles represent a versatile platform for multivalent presentation of viral antigens. Nanoparticles of different sizes and geometries can be designed and combined with appropriate antigens to fit the requirements of different immunization strategies. Here, we describe detailed antigenic, structural, and functional characterization of computationally designed tetrahedral, octahedral, and icosahedral nanoparticle immunogens displaying trimeric HIV envelope glycoprotein (Env) ectodomains. Env trimers, based on subtype A (BG505) or consensus group M (ConM) sequences and engineered with SOSIP stabilizing mutations, were fused to the underlying trimeric building block of each nanoparticle. Initial screening yielded one icosahedral and two tetrahedral nanoparticle candidates, capable of presenting twenty or four copies of the Env trimer. A number of analyses, including detailed structural characterization by cryo-EM, demonstrated that the nanoparticle immunogens possessed the intended structural and antigenic properties. Comparing the humoral responses elicited by ConM-SOSIP trimers presented on a two-component tetrahedral nanoparticle to the corresponding soluble protein revealed that multivalent presentation increased the proportion of the overall antibody response directed against autologous neutralizing Ab epitopes present on the ConM-SOSIP trimers.Author SummaryProtein constructs based on soluble ectodomains of HIV glycoprotein (Env) trimers are the basis of many current HIV vaccine platforms. Multivalent antigen display is one strategy applied to improve the immunogenicity of different subunit vaccine candidates. Here, we describe and comprehensively evaluate a library of de novo designed, protein nanoparticles of different geometries for their ability to present trimeric Env antigens. We found three nanoparticle candidates that can stably incorporate model Env trimer on their surface while maintaining its structure and antigenicity. Immunogenicity of the designed nanoparticles is assessed in vitro and in vivo. In addition to introducing a novel set of reagents for multivalent display of Env trimers, this work provides both guiding principles and a detailed experimental roadmap for the generation, characterization, and optimization of Env-presenting, self-assembling nanoparticle immunogens.


Author(s):  
George C. Ruben ◽  
Kenneth A. Marx

Certain double stranded DNA bacteriophage and viruses are thought to have their DNA organized into large torus shaped structures. Morphologically, these poorly understood biological DNA tertiary structures resemble spermidine-condensed DNA complexes formed in vitro in the total absence of other macromolecules normally synthesized by the pathogens for the purpose of their own DNA packaging. Therefore, we have studied the tertiary structure of these self-assembling torus shaped spermidine- DNA complexes in a series of reports. Using freeze-etch, low Pt-C metal (10-15Å) replicas, we have visualized the microscopic DNA organization of both calf Thymus( CT) and linear 0X-174 RFII DNA toruses. In these structures DNA is circumferentially wound, continuously, around the torus into a semi-crystalline, hexagonal packed array of parallel DNA helix sections.


1969 ◽  
Vol 08 (02) ◽  
pp. 196-206 ◽  
Author(s):  
Dieter. Kummer
Keyword(s):  

ZusammenfassungIn nahezu glucosefreier Suspension von Ehrlich-Ascitescarcinomzellen bewirkt die Zufuhr von Glucose 2,5 × 10–4 bis 10–2 M:1. Hemmung der [14C] Thymidin-Einbaurate in die Zellen.2. Aktivierung des Ribonucleotid-Reductase-Systems und damit Stimulierung der Desoxyribonucleotidsynthese (auch der Thymidintriphosphat-de-novo-Synthese).3. Blockierung der Thymidinkinase über Endprodukthemmung, wodurch die Minderung des [14C] Thymidin-Einbaus in die Zellen erklärbar ist.


Author(s):  
Альбина Шамсуновна Ахметова ◽  
Альфия Ануровна Зарипова
Keyword(s):  

Показана возможность эффективного применения метода культуры тканей для размножения Allium neriniflorum (Herb.) Backer. Исследуемый вид является декоративным растением, размножение которого затруднено из-за низкой всхожести семян и ослабленной способности к формированию дочерних луковиц. Разработана технология клонального микроразмножения из стерильных луковиц. В качестве исходного материала использовали семена A. neriniflorum. Подобраны условия стерилизации, позволяющие достичь максимального числа (75 %) жизнеспособных эксплантов. Поверхностную стерилизацию проводили в ламинар-боксе с использованием в качестве стерилизующего агента 0,1 % раствор диацида. Семена сначала обрабатывали 70 % этанолом, затем стерилизующим раствором. Экспозиция стерилизующих растворов составляла от 5 до 9 мин. Показано, что способность к индуцированному морфогенезу существенно зависит от состава питательной среды. Максимальное число луковиц образовывалось на среде QL — 9 шт./эксплант. Исследуемые виды обладали высокой способностью к мультипликации и формированию полноценных растений при подобранных условиях культивирования in vitro. Выявленная морфогенетическая активность зачаточного побега, сегментов чешуй и донца стерильной луковицы A. neriniflorum, проявляющаяся в способности регенерировать побеги de novo, что возможно только в культуре in vitro, обеспечивает формирование полноценных луковиц. Луковицы, полученные in vitro, включали в последующие циклы микроразмножения. Культура тканей и органов in vitro позволяет размножать A. neriniflorum с более высоким коэффициентом размножения. От одной стерильной луковицы можно получить до 7000 луковиц в год. При традиционном вегетативном способе размножения материнская луковица формирует 1, редко 2 дочерние луковицы.


2017 ◽  
Vol 68 (6) ◽  
pp. 1188-1192
Author(s):  
Daniela Avram ◽  
Nicolae Angelescu ◽  
Dan Nicolae Ungureanu ◽  
Ionica Ionita ◽  
Iulian Bancuta ◽  
...  

The study in vitro of the glass powders bioactivity was performed by soaking them in simulated body fluid for 3 to 21 days at a temperature of 37�C and pH = 7.20. The synthesis de novo of hydroxyapatite, post soaking was confirmed by Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The study of the antimicrobial activity was performed by microbiological examination on two strains of pathogenic bacteria involved in postoperative nosocomial infections.


2019 ◽  
Vol 14 (6) ◽  
pp. 504-518 ◽  
Author(s):  
Dilcele Silva Moreira Dziedzic ◽  
Bassam Felipe Mogharbel ◽  
Priscila Elias Ferreira ◽  
Ana Carolina Irioda ◽  
Katherine Athayde Teixeira de Carvalho

This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords “ADIPOSE”, “CELLS”, and “PERIODONTAL”, with the Boolean operator “AND”. A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.


2020 ◽  
Vol 18 ◽  
Author(s):  
Debadash Panigrahi ◽  
Ganesh Prasad Mishra

Objective:: Recent pandemic caused by SARS-CoV-2 described in Wuhan China in December-2019 spread widely almost all the countries of the world. Corona virus (COVID-19) is causing the unexpected death of many peoples and severe economic loss in several countries. Virtual screening based on molecular docking, drug-likeness prediction, and in silico ADMET study has become an effective tool for the identification of small molecules as novel antiviral drugs to treat diseases. Methods:: In the current study, virtual screening was performed through molecular docking for identifying potent inhibitors against Mpro enzyme from the ZINC library for the possible treatment of COVID-19 pandemic. Interestingly, some compounds are identified as possible anti-covid-19 agents for future research. 350 compounds were screened based on their similarity score with reference compound X77 from ZINC data bank and were subjected to docking with crystal structure available of Mpro enzyme. These compounds were then filtered by their in silico ADME-Tox and drug-likeness prediction values. Result:: Out of these 350 screened compounds, 10 compounds were selected based on their docking score and best docked pose in comparison to the reference compound X77. In silico ADME-Tox and drug likeliness predictions of the top compounds were performed and found to be excellent results. All the 10 screened compounds showed significant binding pose with the target enzyme main protease (Mpro) enzyme and satisfactory pharmacokinetic and toxicological properties. Conclusion:: Based on results we can suggest that the identified compounds may be considered for therapeutic development against the COVID-19 virus and can be further evaluated for in vitro activity, preclinical, clinical studies and formulated in a suitable dosage form to maximize their bioavailability.


Sign in / Sign up

Export Citation Format

Share Document