Transcriptional and Post-Translational Regulation of Cyclin D2 in FSH-Induced Rat Granulosa Cell Proliferation In Vitro.

2012 ◽  
Vol 87 (Suppl_1) ◽  
pp. 518-518
Author(s):  
Yingying Han ◽  
Guoliang Xia ◽  
Benjamin K. Tsang
Reproduction ◽  
2000 ◽  
pp. 275-281 ◽  
Author(s):  
KM Kirkup ◽  
AM Mallin ◽  
CA Bagnell

Epithelial cadherin (E-cadherin) is a member of the cadherin family of calcium-dependent cell adhesion molecules and is present in the ovary. Although expression of E-cadherin is high in healthy pig granulosa cells and low in granulosa cells of atretic follicles, the importance of E-cadherin-mediated adhesion in granulosa cell function is unclear. The aim of the present study was to determine the impact of immunoneutralization of E-cadherin on granulosa cell adhesion, DNA synthesis and cell proliferation in vitro. Before attachment, pig granulosa cells were exposed to a monoclonal E-cadherin antibody (DECMA-1) which blocks E-cadherin function. Controls included substitution of the antibody with either mouse ascites fluid or another E-cadherin antibody directed against the cytoplasmic domain and which was therefore inaccessible in intact cells. Both granulosa cell proliferation and insulin-like growth factor I-induced DNA synthesis were inhibited significantly in the presence of DECMA-1 compared with controls (P < 0.05). Control granulosa cells in culture formed large clusters with many cells packed tightly together. However, after 48 h exposure to the function-perturbing E-cadherin antibody, there was a significant decrease in the size of the granulosa cell clusters (P < 0.05) and the degree of cell-cell contact was reduced compared with control cultures. No effects on DNA synthesis, cell proliferation or cell adhesion were observed when DECMA-1 was substituted with either mouse ascites fluid or the antibody specific for the cytoplasmic domain of E-cadherin. In conclusion, these data provide evidence to support the hypothesis that E-cadherin is important for maintaining granulosa cell contact, DNA synthesis and cell proliferation in vitro. These results indicate that E-cadherin plays a fundamental role in maintaining both the structure and function of ovarian follicles.


1982 ◽  
Vol 54 (4) ◽  
pp. 763-768 ◽  
Author(s):  
Ronald E. Allen ◽  
Gail Robinson ◽  
Matthew J. Parsons ◽  
Robert A. Merkel ◽  
William T. Magee

Endocrinology ◽  
2009 ◽  
Vol 150 (2) ◽  
pp. 929-935 ◽  
Author(s):  
Pradeep P. Kayampilly ◽  
K. M. J. Menon

FSH, acting through multiple signaling pathways, regulates the proliferation and growth of granulosa cells, which are critical for ovulation. The present study investigated whether AMP-activated protein kinase (AMPK), which controls the energy balance of the cell, plays a role in FSH-mediated increase in granulosa cell proliferation. Cells isolated from immature rat ovaries were grown in serum-free, phenol red free DMEM-F12 and were treated with FSH (50 ng/ml) for 0, 5, and 15 min. Western blot analysis showed a significant reduction in AMPK activation as observed by a reduction of phosphorylation at thr 172 in response to FSH treatment at all time points tested. FSH also reduced AMPK phosphorylation in a dose-dependent manner with maximum inhibition at 100 ng/ml. The chemical activator of AMPK (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, 0.5 mm) increased the cell cycle inhibitor p27 kip expression significantly, whereas the AMPK inhibitor (compound C, 20 μm) and FSH reduced p27kip expression significantly compared with control. FSH treatment resulted in an increase in the phosphorylation of AMPK at ser 485/491 and a reduction in thr 172 phosphorylation. Inhibition of Akt phosphorylation using Akt inhibitor VIII reversed the inhibitory effect of FSH on thr 172 phosphorylation of AMPK, whereas ERK inhibitor U0126 had no effect. These results show that FSH, through an Akt-dependent pathway, phosphorylates AMPK at ser 481/495 and inhibits its activation by reducing thr 172 phosphorylation. AMPK activation by 5-amino-imidazole-4-carboxamide-1-β-d-ribofuranoside treatment resulted in a reduction of cell cycle regulatory protein cyclin D2 mRNA expression, whereas FSH increased the expression by 2-fold. These results suggest that FSH promotes granulosa cell proliferation by increasing cyclin D2 mRNA expression and by reducing p27 kip expression by inhibiting AMPK activation through an Akt-dependent pathway. FSH stimulates granulosa cell proliferation by reducing cell cycle inhibitor p27 kip through AMP kinase inhibition.


2002 ◽  
Vol 266 (4) ◽  
pp. 223-228 ◽  
Author(s):  
Seung Yup Ku ◽  
Y. M. Choi ◽  
Chang Suk Suh ◽  
Seok Hyun Kim ◽  
Jung Gu Kim ◽  
...  

2011 ◽  
Vol 14 (9) ◽  
pp. 1023-1031 ◽  
Author(s):  
Satyakumar Vidyashankar ◽  
Sandeep R. Varma ◽  
Mohammed Azeemudin ◽  
Ashok Godavarthi ◽  
Nandakumar S. Krishna ◽  
...  

2005 ◽  
Vol 16 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Evaggelia S. Arsenou ◽  
Evangelia P. Papadimitriou ◽  
Eleni Kliafa ◽  
Maria Hountala ◽  
Sotiris S. Nikolaropoulos

1997 ◽  
Vol 51 (6) ◽  
pp. 1838-1846 ◽  
Author(s):  
Masashi Haraguchi ◽  
Mikio Okamura ◽  
Masayo Konishi ◽  
Yoshio Konishi ◽  
Nobuo Negoro ◽  
...  

2014 ◽  
Vol 51 (4) ◽  
pp. 372-380 ◽  
Author(s):  
Sureshbabu Ram Kumar Pandian ◽  
Venkataraman Deepak ◽  
Hariharan Nellaiah ◽  
Krishnan Sundar

Sign in / Sign up

Export Citation Format

Share Document