scholarly journals Change Point Inference in the Presence of Missing Covariates for Principal Surrogate Evaluation in Vaccine Trials

Biometrika ◽  
2020 ◽  
Author(s):  
Tao Yang ◽  
Ying Huang ◽  
Youyi Fong

Abstract We consider the use of threshold-based regression models for evaluating immune response biomarkers as principal surrogate markers of a vaccine’s protective effect. Threshold-based regression models, which allow the relationship between a clinical outcome and a covariate to change dramatically across a threshold value in the covariate, have been studied by various authors under fully observed data. Limited research, however, has examined these models in the presence of missing covariates, such as the counterfactual potential immune responses of a participant in the placebo arm of a standard vaccine trial had s/he been assigned to the vaccine arm instead. Based on a hinge model for a threshold effect of the principal surrogate on vaccine efficacy, we develop a regression methodology that consists of two components: (i) The estimated likelihood method is employed to handle missing potential outcomes, and (ii) a penalty is imposed on the estimated likelihood to ensure satisfactory finite sample performance. We develop a method that allows joint estimation of all model parameters as well as a two-step method that separates the estimation of the threshold parameter from the rest of the parameters. Stable iterative algorithms are developed to implement the two methods and the asymptotic properties of the proposed estimators are established. In simulation studies, the proposed estimators are shown to have satisfactory finite sample performance. The proposed methods are applied to analyse a real dataset collected from dengue vaccine efficacy trials to predict how vaccine efficacy varies with an individual’s potential immune response if receiving vaccine.

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1000 ◽  
Author(s):  
Luis Sánchez ◽  
Víctor Leiva ◽  
Manuel Galea ◽  
Helton Saulo

In the present paper, a novel spatial quantile regression model based on the Birnbaum–Saunders distribution is formulated. This distribution has been widely studied and applied in many fields. To formulate such a spatial model, a parameterization of the multivariate Birnbaum–Saunders distribution, where one of its parameters is associated with the quantile of the respective marginal distribution, is established. The model parameters are estimated by the maximum likelihood method. Finally, a data set is applied for illustrating the formulated model.


2019 ◽  
Vol 11 (01n02) ◽  
pp. 1950003
Author(s):  
Fábio Prataviera ◽  
Gauss M. Cordeiro ◽  
Edwin M. M. Ortega ◽  
Adriano K. Suzuki

In several applications, the distribution of the data is frequently unimodal, asymmetric or bimodal. The regression models commonly used for applications to data with real support are the normal, skew normal, beta normal and gamma normal, among others. We define a new regression model based on the odd log-logistic geometric normal distribution for modeling asymmetric or bimodal data with support in [Formula: see text], which generalizes some known regression models including the widely known heteroscedastic linear regression. We adopt the maximum likelihood method for estimating the model parameters and define diagnostic measures to detect influential observations. For some parameter settings, sample sizes and different systematic structures, various simulations are performed to verify the adequacy of the estimators of the model parameters. The empirical distribution of the quantile residuals is investigated and compared with the standard normal distribution. We prove empirically the usefulness of the proposed models by means of three applications to real data.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 194
Author(s):  
M. El-Morshedy ◽  
Fahad Sameer Alshammari ◽  
Yasser S. Hamed ◽  
Mohammed S. Eliwa ◽  
Haitham M. Yousof

In this paper, a new parametric compound G family of continuous probability distributions called the Poisson generalized exponential G (PGEG) family is derived and studied. Relevant mathematical properties are derived. Some new bivariate G families using the theorems of “Farlie-Gumbel-Morgenstern copula”, “the modified Farlie-Gumbel-Morgenstern copula”, “the Clayton copula”, and “the Renyi’s entropy copula” are presented. Many special members are derived, and a special attention is devoted to the exponential and the one parameter Pareto type II model. The maximum likelihood method is used to estimate the model parameters. A graphical simulation is performed to assess the finite sample behavior of the estimators of the maximum likelihood method. Two real-life data applications are proposed to illustrate the importance of the new family.


Author(s):  
Wahid Shehata

A new four parameter lifetime model called the Weibullgeneralized Lomax is proposed and studied.  The new density function can be "right skewed", "symmetric" and "left skewed" and its corresponding failure rate function can be "monotonically decreasing", " monotonically increasing" and "constant". The skewness of the new distribution can negative and positive. The maximum likelihood method is employed and used for estimating the model parameters. Using the "biases" and "mean squared errors", we performed simulation experiments for assessing the finite sample behavior of the maximum likelihood estimators. The new model deserved to be chosen as the best model among many well-known Lomax extension such as exponentiated Lomax, gamma Lomax, Kumaraswamy Lomax, odd log-logistic Lomax, Macdonald Lomax, beta Lomax, reduced odd log-logistic Lomax, reduced Burr-Hatke Lomax, reduced WG-Lx, special generalized mixture Lomax and the standard Lomax distributions in modeling the "failure times" and the "service times" data sets.


2003 ◽  
Vol 5 (3) ◽  
pp. 363 ◽  
Author(s):  
Slamet Sugiri

The main objective of this study is to examine a hypothesis that the predictive content of normal income disaggregated into operating income and nonoperating income outperforms that of aggregated normal income in predicting future cash flow. To test the hypothesis, linear regression models are developed. The model parameters are estimated based on fifty-five manufacturing firms listed in the Jakarta Stock Exchange (JSX) up to the end of 1997.This study finds that empirical evidence supports the hypothesis. This evidence supports arguments that, in reporting income from continuing operations, multiple-step approach is preferred to single-step one.


2017 ◽  
Vol 86 (3) ◽  
Author(s):  
Susan L. Brockmeier ◽  
Crystal L. Loving ◽  
Tracy L. Nicholson ◽  
Jinhong Wang ◽  
Sarah E. Peters ◽  
...  

ABSTRACT Streptococcus suis is a bacterium that is commonly carried in the respiratory tract and that is also one of the most important invasive pathogens of swine, commonly causing meningitis, arthritis, and septicemia. Due to the existence of many serotypes and a wide range of immune evasion capabilities, efficacious vaccines are not readily available. The selection of S. suis protein candidates for inclusion in a vaccine was accomplished by identifying fitness genes through a functional genomics screen and selecting conserved predicted surface-associated proteins. Five candidate proteins were selected for evaluation in a vaccine trial and administered both intranasally and intramuscularly with one of two different adjuvant formulations. Clinical protection was evaluated by subsequent intranasal challenge with virulent S. suis . While subunit vaccination with the S. suis proteins induced IgG antibodies to each individual protein and a cellular immune response to the pool of proteins and provided substantial protection from challenge with virulent S. suis , the immune response elicited and the degree of protection were dependent on the parenteral adjuvant given. Subunit vaccination induced IgG reactive against different S. suis serotypes, indicating a potential for cross protection.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Moumita Chatterjee ◽  
Sugata Sen Roy

AbstractIn this article, we model alternately occurring recurrent events and study the effects of covariates on each of the survival times. This is done through the accelerated failure time models, where we use lagged event times to capture the dependence over both the cycles and the two events. However, since the errors of the two regression models are likely to be correlated, we assume a bivariate error distribution. Since most event time distributions do not readily extend to bivariate forms, we take recourse to copula functions to build up the bivariate distributions from the marginals. The model parameters are then estimated using the maximum likelihood method and the properties of the estimators studied. A data on respiratory disease is used to illustrate the technique. A simulation study is also conducted to check for consistency.


1992 ◽  
Vol 8 (4) ◽  
pp. 452-475 ◽  
Author(s):  
Jeffrey M. Wooldridge

A test for neglected nonlinearities in regression models is proposed. The test is of the Davidson-MacKinnon type against an increasingly rich set of non-nested alternatives, and is based on sieve estimation of the alternative model. For the case of a linear parametric model, the test statistic is shown to be asymptotically standard normal under the null, while rejecting with probability going to one if the linear model is misspecified. A small simulation study suggests that the test has adequate finite sample properties, but one must guard against over fitting the nonparametric alternative.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1850
Author(s):  
Rashad A. R. Bantan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

Unit distributions are commonly used in probability and statistics to describe useful quantities with values between 0 and 1, such as proportions, probabilities, and percentages. Some unit distributions are defined in a natural analytical manner, and the others are derived through the transformation of an existing distribution defined in a greater domain. In this article, we introduce the unit gamma/Gompertz distribution, founded on the inverse-exponential scheme and the gamma/Gompertz distribution. The gamma/Gompertz distribution is known to be a very flexible three-parameter lifetime distribution, and we aim to transpose this flexibility to the unit interval. First, we check this aspect with the analytical behavior of the primary functions. It is shown that the probability density function can be increasing, decreasing, “increasing-decreasing” and “decreasing-increasing”, with pliant asymmetric properties. On the other hand, the hazard rate function has monotonically increasing, decreasing, or constant shapes. We complete the theoretical part with some propositions on stochastic ordering, moments, quantiles, and the reliability coefficient. Practically, to estimate the model parameters from unit data, the maximum likelihood method is used. We present some simulation results to evaluate this method. Two applications using real data sets, one on trade shares and the other on flood levels, demonstrate the importance of the new model when compared to other unit models.


Sign in / Sign up

Export Citation Format

Share Document