scholarly journals Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder

Brain ◽  
2020 ◽  
Vol 143 (8) ◽  
pp. 2437-2453
Author(s):  
Pauline E Schneeberger ◽  
Fanny Kortüm ◽  
Georg Christoph Korenke ◽  
Malik Alawi ◽  
René Santer ◽  
...  

Abstract In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.

2021 ◽  
Author(s):  
Garry Elvin ◽  
Paras Patel ◽  
Petia Sice ◽  
Chirine Riachy ◽  
Nigel Osborne ◽  
...  

BACKGROUND Heart rate variability (HRV), or the variation in the time interval between consecutive heartbeats, is a proven measure for assessing changes in autonomic activity. An increase in variability suggests an upregulation of the parasympathetic nervous system (PNS). Music was shown to have an effect on the limbic system, respiratory rate, and blood pressure. However, there have been relatively few empirical investigations on the effect of music on HRV compared to mean heart rate (HR). Also, the majority of studies have been experimental rather than interventional, reporting significant changes in HRV as a function of musical characteristics, such as tempo, genre, and valence. OBJECTIVE The aim of this pilot study is to evaluate the impact of short duration music listening on the autonomic nervous system response of healthy adults. METHODS Six participants (three males and three females) were tested to investigate the effect of listening to music on HR and HRV. Electrocardiographic (ECG) data was recorded at a sampling rate of 1000 Hz using an eMotion Faros 360 device produced by Bittium Biosignals. The data was collected while the participants listened to four pre-selected songs in a random order separated by a relaxation period of 5 minutes. Data was then cleaned and processed through Kubious HRV 2.0 software. Statistical analysis using Wilcoxon signed rank test was carried out for the time and frequency domains. RESULTS For all but one song that is shorter than 3 minutes (song 1), we observed a statistically significant increase in Standard Deviation of the RR intervals (SDRR) (song 1: P=.125, r=.333; song 2: P=.023, r=.575; song 3: P=.014, r=.635; song 4: P=.014, r=.635) and in the Low Frequency (LF) component of the cardiac spectrogram (song 1: P=.300, r=.151; song 2: P=.038, r=.514; song 3: P=.014, r=.635; song 4: P=.014, r=.635) with a large effect size r, indicating increased HRV. No significant change in mean HR was observed (song 1: P=.173 r=-.272; song 2: P=.058, r=-.454; song 3: P=.125, r=-.333; song 4: P=.232. r=-.212). CONCLUSIONS Listening to pre-selected songs of longer duration than 3 minutes 30 seconds is associated with significant increases in HRV measures, especially SDRR and LF. Music thus has the potential to overcome autonomic nervous system (ANS) dysregulation and thereby benefit health and wellbeing.


Science ◽  
1984 ◽  
Vol 224 (4653) ◽  
pp. 1107-1109 ◽  
Author(s):  
J. Fallon ◽  
K. Seroogy ◽  
S. Loughlin ◽  
R. Morrison ◽  
R. Bradshaw ◽  
...  

2008 ◽  
Vol 181 (10) ◽  
pp. 7002-7013 ◽  
Author(s):  
Cécile Arduise ◽  
Toufik Abache ◽  
Lei Li ◽  
Martine Billard ◽  
Aurélie Chabanon ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Katrin Liffers ◽  
Katrin Lamszus ◽  
Alexander Schulte

Glioblastoma (GBM), the most common malignant brain tumor in adults, contains a subpopulation of cells with a stem-like phenotype (GS-cells). GS-cells can be maintainedin vitrousing serum-free medium supplemented with epidermal growth factor, basic fibroblast growth factor-2, and heparin. However, this method does not conserve amplification of the Epidermal Growth Factor Receptor (EGFR) gene, which is present in over 50% of all newly diagnosed GBM cases. GS-cells with retainedEGFRamplification could overcome the limitations of currentin vitromodel systems and contribute significantly to preclinical research on EGFR-targeted therapy. This review recapitulates recent methodological approaches to expand stem-like cells from GBM with differentEGFRstatus in order to maintain EGFR-dependent intratumoral heterogeneityin vitro. Further, it will summarize the current knowledge about the impact ofEGFRamplification and overexpression on the stem-like phenotype of GBM-derived GS-cells and different approaches to target the EGFR-dependent GS-cell compartment of GBM.


Sign in / Sign up

Export Citation Format

Share Document