scholarly journals Inaccurate cortical tracking of speech in adults with impaired speech perception in noise

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Marc Vander Ghinst ◽  
Mathieu Bourguignon ◽  
Vincent Wens ◽  
Gilles Naeije ◽  
Cecile Ducène ◽  
...  

Abstract Impaired speech perception in noise despite normal peripheral auditory function is a common problem in young adults. Despite a growing body of research, the pathophysiology of this impairment remains unknown. This magnetoencephalography study characterizes the cortical tracking of speech in a multi-talker background in a group of highly selected adult subjects with impaired speech perception in noise without peripheral auditory dysfunction. Magnetoencephalographic signals were recorded from 13 subjects with impaired speech perception in noise (six females, mean age: 30 years) and matched healthy subjects while they were listening to 5 different recordings of stories merged with a multi-talker background at different signal to noise ratios (No Noise, +10, +5, 0 and −5 dB). The cortical tracking of speech was quantified with coherence between magnetoencephalographic signals and the temporal envelope of (i) the global auditory scene (i.e. the attended speech stream and the multi-talker background noise), (ii) the attended speech stream only and (iii) the multi-talker background noise. Functional connectivity was then estimated between brain areas showing altered cortical tracking of speech in noise in subjects with impaired speech perception in noise and the rest of the brain. All participants demonstrated a selective cortical representation of the attended speech stream in noisy conditions, but subjects with impaired speech perception in noise displayed reduced cortical tracking of speech at the syllable rate (i.e. 4–8 Hz) in all noisy conditions. Increased functional connectivity was observed in subjects with impaired speech perception in noise in Noiseless and speech in noise conditions between supratemporal auditory cortices and left-dominant brain areas involved in semantic and attention processes. The difficulty to understand speech in a multi-talker background in subjects with impaired speech perception in noise appears to be related to an inaccurate auditory cortex tracking of speech at the syllable rate. The increased functional connectivity between supratemporal auditory cortices and language/attention-related neocortical areas probably aims at supporting speech perception and subsequent recognition in adverse auditory scenes. Overall, this study argues for a central origin of impaired speech perception in noise in the absence of any peripheral auditory dysfunction.

2011 ◽  
Vol 7 (1) ◽  
pp. 8-14
Author(s):  
Robert Moore ◽  
Susan Gordon-Hickey

The purpose of this article is to propose 4 dimensions for consideration in hearing aid fittings and 4 tests to evaluate those dimensions. The 4 dimensions and tests are (a) working memory, evaluated by the Revised Speech Perception in Noise test (Bilger, Nuetzel, & Rabinowitz, 1984); (b) performance in noise, evaluated by the Quick Speech in Noise test (QSIN; Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004); (c) acceptance of noise, evaluated by the Acceptable Noise Level test (ANL; Nabelek, Tucker, & Letowski, 1991); and (d) performance versus perception, evaluated by the Perceptual–Performance test (PPT; Saunders & Cienkowski, 2002). The authors discuss the 4 dimensions and tests in the context of improving the quality of hearing aid fittings.


2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Younes Lotfi ◽  
Mahdieh Hasanalifard ◽  
Abdollah Moossavi ◽  
Enayatollah Bakhshi ◽  
Mohammad Ajalloueyan

Abstract Background The objective of this study was to evaluate the effect of “Spatially separated speech in noise” auditory training on the ability of speech perception in noise among bimodal fitting users. The assumption was that the rehabilitation can enhance spatial hearing and hence speech in noise perception. This study was an interventional study, with a pre/post-design. Speech recognition ability was assessed with the specific tests. After performing the rehabilitation stages in the intervention group, the speech tests were again implemented, and by comparing the pre- and post-intervention data, the effect of auditory training on the speech abilities was assessed. Twenty-four children of 8–12 years who had undergone cochlear implantation and continuously used bimodal fitting were investigated in two groups of control and intervention. Results The results showed a significant difference between the groups in different speech tests after the intervention, which indicated that the intervention group have improved more than the control group. Conclusion It can be concluded that “Spatially separated speech in noise” auditory training can improve the speech perception in noise in bimodal fitting users. In general, this rehabilitation method is useful for enhancing the speech in noise perception ability.


2018 ◽  
Vol 36 (2) ◽  
pp. 156-174 ◽  
Author(s):  
Ritva Torppa ◽  
Andrew Faulkner ◽  
Teija Kujala ◽  
Minna Huotilainen ◽  
Jari Lipsanen

The perception of speech in noise is challenging for children with cochlear implants (CIs). Singing and musical instrument playing have been associated with improved auditory skills in normal-hearing (NH) children. Therefore, we assessed how children with CIs who sing informally develop in the perception of speech in noise compared to those who do not. We also sought evidence of links of speech perception in noise with MMN and P3a brain responses to musical sounds and studied effects of age and changes over a 14–17 month time period in the speech-in-noise performance of children with CIs. Compared to the NH group, the entire CI group was less tolerant of noise in speech perception, but both groups improved similarly. The CI singing group showed better speech-in-noise perception than the CI non-singing group. The perception of speech in noise in children with CIs was associated with the amplitude of MMN to a change of sound from piano to cymbal, and in the CI singing group only, with earlier P3a for changes in timbre. While our results cannot address causality, they suggest that singing and musical instrument playing may have a potential to enhance the perception of speech in noise in children with CIs.


2020 ◽  
Vol 14 ◽  
Author(s):  
Stephanie Haro ◽  
Christopher J. Smalt ◽  
Gregory A. Ciccarelli ◽  
Thomas F. Quatieri

Many individuals struggle to understand speech in listening scenarios that include reverberation and background noise. An individual's ability to understand speech arises from a combination of peripheral auditory function, central auditory function, and general cognitive abilities. The interaction of these factors complicates the prescription of treatment or therapy to improve hearing function. Damage to the auditory periphery can be studied in animals; however, this method alone is not enough to understand the impact of hearing loss on speech perception. Computational auditory models bridge the gap between animal studies and human speech perception. Perturbations to the modeled auditory systems can permit mechanism-based investigations into observed human behavior. In this study, we propose a computational model that accounts for the complex interactions between different hearing damage mechanisms and simulates human speech-in-noise perception. The model performs a digit classification task as a human would, with only acoustic sound pressure as input. Thus, we can use the model's performance as a proxy for human performance. This two-stage model consists of a biophysical cochlear-nerve spike generator followed by a deep neural network (DNN) classifier. We hypothesize that sudden damage to the periphery affects speech perception and that central nervous system adaptation over time may compensate for peripheral hearing damage. Our model achieved human-like performance across signal-to-noise ratios (SNRs) under normal-hearing (NH) cochlear settings, achieving 50% digit recognition accuracy at −20.7 dB SNR. Results were comparable to eight NH participants on the same task who achieved 50% behavioral performance at −22 dB SNR. We also simulated medial olivocochlear reflex (MOCR) and auditory nerve fiber (ANF) loss, which worsened digit-recognition accuracy at lower SNRs compared to higher SNRs. Our simulated performance following ANF loss is consistent with the hypothesis that cochlear synaptopathy impacts communication in background noise more so than in quiet. Following the insult of various cochlear degradations, we implemented extreme and conservative adaptation through the DNN. At the lowest SNRs (<0 dB), both adapted models were unable to fully recover NH performance, even with hundreds of thousands of training samples. This implies a limit on performance recovery following peripheral damage in our human-inspired DNN architecture.


2019 ◽  
Vol 62 (9) ◽  
pp. 3290-3301
Author(s):  
Jingjing Guan ◽  
Chang Liu

Purpose Degraded speech intelligibility in background noise is a common complaint of listeners with hearing loss. The purpose of the current study is to explore whether 2nd formant (F2) enhancement improves speech perception in noise for older listeners with hearing impairment (HI) and normal hearing (NH). Method Target words (e.g., color and digit) were selected and presented based on the paradigm of the coordinate response measure corpus. Speech recognition thresholds with original and F2-enhanced speech in 2- and 6-talker babble were examined for older listeners with NH and HI. Results The thresholds for both the NH and HI groups improved for enhanced speech signals primarily in 2-talker babble, but not in 6-talker babble. The F2 enhancement benefits did not correlate significantly with listeners' age and their average hearing thresholds in most listening conditions. However, speech intelligibility index values increased significantly with F2 enhancement in babble for listeners with HI, but not for NH listeners. Conclusions Speech sounds with F2 enhancement may improve listeners' speech perception in 2-talker babble, possibly due to a greater amount of speech information available in temporally modulated noise or a better capacity to separate speech signals from background babble.


2020 ◽  
Vol 24 (4) ◽  
pp. 167-173
Author(s):  
Srikar Vijayasarathy ◽  
Animesh Barman

Background and Objectives: Top-down restoration of distorted speech, tapped as phonemic restoration of speech in noise, maybe a useful tool to understand robustness of perception in adverse listening situations. However, the relationship between phonemic restoration and speech perception in noise is not empirically clear.Subjects and Methods: 20 adults (40-55 years) with normal audiometric findings were part of the study. Sentence perception in noise performance was studied with various signal-to-noise ratios (SNRs) to estimate the SNR with 50% score. Performance was also measured for sentences interrupted with silence and for those interrupted by speech noise at -10, -5, 0, and 5 dB SNRs. The performance score in the noise interruption condition was subtracted by quiet interruption condition to determine the phonemic restoration magnitude.Results: Fairly robust improvements in speech intelligibility was found when the sentences were interrupted with speech noise instead of silence. Improvement with increasing noise levels was non-monotonic and reached a maximum at -10 dB SNR. Significant correlation between speech perception in noise performance and phonemic restoration of sentences interrupted with -10 dB SNR speech noise was found.Conclusions: It is possible that perception of speech in noise is associated with top-down processing of speech, tapped as phonemic restoration of interrupted speech. More research with a larger sample size is indicated since the restoration is affected by the type of speech material and noise used, age, working memory, and linguistic proficiency, and has a large individual variability.


1993 ◽  
Vol 32 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Lennard Ferman ◽  
Johannes Verschuure ◽  
Bert van Zanten

2019 ◽  
Vol 116 (47) ◽  
pp. 23753-23759 ◽  
Author(s):  
Lina Motlagh Zadeh ◽  
Noah H. Silbert ◽  
Katherine Sternasty ◽  
De Wet Swanepoel ◽  
Lisa L. Hunter ◽  
...  

Young healthy adults can hear tones up to at least 20 kHz. However, clinical audiometry, by which hearing loss is diagnosed, is limited at high frequencies to 8 kHz. Evidence suggests there is salient information at extended high frequencies (EHFs; 8 to 20 kHz) that may influence speech intelligibility, but whether that information is used in challenging listening conditions remains unknown. Difficulty understanding speech in noisy environments is the most common concern people have about their hearing and usually the first sign of age-related hearing loss. Digits-in-noise (DIN), a widely used test of speech-in-noise perception, can be sensitized for detection of high-frequency hearing loss by low-pass filtering the broadband masking noise. Here, we used standard and EHF audiometry, self-report, and successively higher cutoff frequency filters (2 to 8 kHz) in a DIN test to investigate contributions of higher-frequency hearing to speech-in-noise perception. Three surprising results were found. First, 74 of 116 “normally hearing,” mostly younger adults had some hearing loss at frequencies above 8 kHz. Early EHF hearing loss may thus be an easily measured, preventive warning to protect hearing. Second, EHF hearing loss correlated with self-reported difficulty hearing in noise. Finally, even with the broadest filtered noise (≤8 kHz), DIN hearing thresholds were significantly better (P < 0.0001) than those using broadband noise. Sound energy above 8 kHz thus contributes to speech perception in noise. People with “normal hearing” frequently report difficulty hearing in challenging environments. Our results suggest that one contribution to this difficulty is EHF hearing loss.


2004 ◽  
Vol 47 (5) ◽  
pp. 1001-1011 ◽  
Author(s):  
Anna K. Nabelek ◽  
Joanna W. Tampas ◽  
Samuel B. Burchfield

Background noise is a significant factor influencing hearing-aid satisfaction and is a major reason for rejection of hearing aids. Attempts have been made by previous researchers to relate the use of hearing aids to speech perception in noise (SPIN), with an expectation of improved speech perception followed by an increased acceptance of hearing aids. Unfortunately, SPIN was not related to hearing-aid use or satisfaction. A new measure of listener reaction to background noise has been proposed. The acceptable noise level (ANL), expressed in decibels, is defined as a difference between the most comfortable listening level for speech and the highest background noise level that is acceptable when listening to and following a story. The ANL measure assumes that speech understanding in noise may not be as important as is the willingness to listen in the presence of noise. It has been established that people who accept background noise have smaller ANLs and tend to be "good" users of hearing aids. Conversely, people who cannot accept background noise have larger ANLs and may only use hearing aids occasionally or reject them altogether. Because this is a new measure, it was important to determine the reliability of the ANL over time with and without hearing aids, to determine the effect of acclimatization to hearing aids, and to compare the ANL to well-established measures such as speech perception scores collected with the SPIN test. Results from 50 listeners indicate that for both good and occasional hearing aid users, the ANL is comparable in reliability to the SPIN test and that both measures do not change with acclimatization. The ANLs and SPIN scores are unrelated. Although the SPIN scores improve with amplification, the ANLs are unaffected by amplification, suggesting that the ANL is inherent to an individual and can be established prior to hearing aid fitting as a possible predictor of hearing-aid use. KEY WORDS : background noise, hearing aids, acceptable noise level, speech perception in noise


Sign in / Sign up

Export Citation Format

Share Document