scholarly journals Left hemisphere abnormalities in developmental prosopagnosia when looking at faces but not words

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Christian Gerlach ◽  
Solja K Klargaard ◽  
Dag Alnæs ◽  
Knut K Kolskår ◽  
Jens Karstoft ◽  
...  

Abstract Developmental prosopagnosia is a disorder characterized by profound and lifelong difficulties with face recognition in the absence of sensory or intellectual deficits or known brain injury. While there has been a surge in research on developmental prosopagnosia over the last decade and a half, the cognitive mechanisms behind the disorder and its neural underpinnings remain elusive. Most recently it has been proposed that developmental prosopagnosia may be a manifestation of widespread disturbance in neural migration which affects both face responsive brain regions as well as other category-sensitive visual areas. We present a combined behavioural and functional MRI study of face, object and word processing in a group of developmental prosopagnosics (N = 15). We show that developmental prosopagnosia is associated with reduced activation of core ventral face areas during perception of faces. The reductions were bilateral but tended to be more pronounced in the left hemisphere. As the first study to address category selectivity for word processing in developmental prosopagnosia, we do not, however, find evidence for reduced activation of the visual word form area during perception of orthographic material. We also find no evidence for reduced activation of the lateral occipital complex during perception of objects. These imaging findings correspond well with the behavioural performance of the developmental prosopagnosics, who show severe impairment for faces but normal reading and recognition of line drawings. Our findings suggest that a general deficit in neural migration across ventral occipito-temporal cortex is not a viable explanation for developmental prosopagnosia. The finding of left hemisphere involvement in our group of developmental prosopagnosics was at first surprising. However, a closer look at existing studies shows similar, but hitherto undiscussed, findings. These left hemisphere abnormalities seen in developmental prosopagnosia contrasts with lesion and imaging studies suggesting primarily right hemisphere involvement in acquired prosopagnosia, and this may reflect that the left hemisphere is important for the development of a normal face recognition network.

1998 ◽  
Vol 10 (3) ◽  
pp. 303-315 ◽  
Author(s):  
C. J. Price ◽  
D. Howard ◽  
K. Patterson ◽  
E. A. Warburton ◽  
K. J. Friston ◽  
...  

Deep dyslexia is a striking reading disorder that results from left-hemisphere brain damage and is characterized by semantic errors in reading single words aloud (e.g., reading spirit as whisky). Two types of explanation for this syndrome have been advanced. One is that deep dyslexia results from a residual left-hemisphere reading system that has lost the ability to pronounce a printed word without reference to meaning. The second is that deep dyslexia reflects right-hemisphere word processing. Although previous attempts to adjudicate between these hypotheses have been inconclusive, the controversy can now be addressed by mapping functional anatomy. In this study, we demonstrate that reading by two deep dyslexic patients (CJ and JG) involves normal or enhanced activity in spared left-hemisphere regions associated with naming (Broca's area and the left posterior inferior temporal cortex) and with the meanings of words (the left posterior temporo-parietal cortex and the left anterior temporal cortex). In the right-hemisphere homologues of these regions, there was inconsistent activation within the normal group and between the deep dyslexic patients. One (CJ) showed enhanced activity (relative to the normals) in the right anterior inferior temporal cortex, the other (JG) in the right Broca's area, and both in the right frontal operculum. Although these differential right-hemisphere activations may have influenced the reading behavior of the patients, their activation patterns primarily reflect semantic and phonological systems in spared regions of the left hemisphere. These results preclude an explanation of deep dyslexia in terms of purely right-hemisphere word processing.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 488
Author(s):  
Milda Sarkinaite ◽  
Rymante Gleizniene ◽  
Virginija Adomaitiene ◽  
Kristina Dambrauskiene ◽  
Nijole Raskauskiene ◽  
...  

Structural brain changes are found in suicide attempters and in patients with mental disorders. It remains unclear whether the suicidal behaviors are related to atrophy of brain regions and how the morphology of specific brain areas is changing with each suicide attempt. The sample consisted of 56 patients hospitalized after first suicide attempt (first SA) (n = 29), more than one suicide attempt (SA > 1) (n = 27) and 54 healthy controls (HC). Brain volume was measured using FreeSurfer 6.0 automatic segmentation technique. In comparison to HC, patients with first SA had significantly lower cortical thickness of the superior and rostral middle frontal areas, the inferior, middle and superior temporal areas of the left hemisphere and superior frontal area of the right hemisphere. In comparison to HC, patients after SA > 1 had a significantly lower cortical thickness in ten areas of frontal cortex of the left hemisphere and seven areas of the right hemisphere. The comparison of hippocampus volume showed a significantly lower mean volume of left and right parts in patients with SA > 1, but not in patients with first SA. The atrophy of frontal, temporal cortex and hippocampus parts was significantly higher in repeated suicide attempters than in patients with first suicide attempt.


2020 ◽  
Author(s):  
Matthew J. Boring ◽  
Edward H. Silson ◽  
Michael J. Ward ◽  
R. Mark Richardson ◽  
Julie A. Fiez ◽  
...  

AbstractThe map of category-selectivity in human ventral temporal cortex (VTC) provides organizational constraints to models of object recognition. One important principle is lateral-medial response biases to stimuli that are typically viewed in the center or periphery of the visual field. However, little is known about the relative temporal dynamics and location of regions that respond preferentially to stimulus classes that are centrally viewed, like the face and word processing networks. Here, word- and face-selective regions within VTC were mapped using intracranial recordings from 36 patients. Partially overlapping, but also anatomically dissociable patches of face and word selectivity were found in ventral temporal cortex. In addition to canonical word-selective regions along the left posterior occipitotemporal sulcus, selectivity was also located medial and anterior to face-selective regions on the fusiform gyrus at the group level and within individual subjects. These regions were replicated using 7-Tesla fMRI in healthy subjects. Left hemisphere word-selective regions preceded right hemisphere responses by 125 ms, potentially reflecting the left hemisphere bias for language; with no hemispheric difference in face-selective response latency. Word-selective regions along the posterior fusiform responded first, then spread medially and laterally, then anteriorally. Face-selective responses were first seen in posterior fusiform regions bilaterally, then proceeded anteriorally from there. For both words and faces, the relative delay between regions was longer than would be predicted by purely feedforward models of visual processing. The distinct time-courses of responses across these regions, and between hemispheres, suggest a complex and dynamic functional circuit supports face and word perception.Significance StatementRepresentations of visual objects in the human brain have been shown to be organized by several principles, including whether those objects tend to be viewed centrally or in the periphery of the visual field. However, it remains unclear how regions that process objects that are viewed centrally, like words and faces, are organized relative to one another. Here, direct neural recordings and 7T fMRI demonstrate that several intermingled regions in ventral temporal cortex participate in word and face processing. These regions display differences in their temporal dynamics and response characteristics, both within and between brain hemispheres, suggesting they play different roles in perception. These results illuminate extended, bilateral, and dynamic brain pathways that support face perception and reading.


2011 ◽  
Vol 23 (8) ◽  
pp. 1987-1997 ◽  
Author(s):  
Flavia Mancini ◽  
Nadia Bolognini ◽  
Emanuela Bricolo ◽  
Giuseppe Vallar

The Müller-Lyer illusion occurs both in vision and in touch, and transfers cross-modally from vision to haptics [Mancini, F., Bricolo, E., & Vallar, G. Multisensory integration in the Müller-Lyer illusion: From vision to haptics. Quarterly Journal of Experimental Psychology, 63, 818–830, 2010]. Recent evidence suggests that the neural underpinnings of the Müller-Lyer illusion in the visual modality involve the bilateral lateral occipital complex (LOC) and right superior parietal cortex (SPC). Conversely, the neural correlates of the haptic and cross-modal illusions have never been investigated previously. Here we used repetitive TMS (rTMS) to address the causal role of the regions activated by the visual illusion in the generation of the visual, haptic, and cross-modal visuo-haptic illusory effects, investigating putative modality-specific versus cross-modal underlying processes. rTMS was administered to the right and the left hemisphere, over occipito-temporal cortex or SPC. rTMS over left and right occipito-temporal cortex impaired both unisensory (visual, haptic) and cross-modal processing of the illusion in a similar fashion. Conversely, rTMS interference over left and right SPC did not affect the illusion in any modality. These results demonstrate the causal involvement of bilateral occipito-temporal cortex in the representation of the visual, haptic, and cross-modal Müller-Lyer illusion, in favor of the hypothesis of shared underlying processes. This indicates that occipito-temporal cortex plays a cross-modal role in perception both of illusory and nonillusory shapes.


2008 ◽  
Vol 20 (4) ◽  
pp. 672-681 ◽  
Author(s):  
Qing Cai ◽  
Michal Lavidor ◽  
Marc Brysbaert ◽  
Yves Paulignan ◽  
Tatjana A. Nazir

The brain areas involved in visual word processing rapidly become lateralized to the left cerebral hemisphere. It is often assumed this is because, in the vast majority of people, cortical structures underlying language production are lateralized to the left hemisphere. An alternative hypothesis, however, might be that the early stages of visual word processing are lateralized to the left hemisphere because of intrinsic hemispheric differences in processing low-level visual information as required for distinguishing fine-grained visual forms such as letters. If the alternative hypothesis was correct, we would expect posterior occipito-temporal processing stages still to be lateralized to the left hemisphere for participants with right hemisphere dominance for the frontal lobe processes involved in language production. By analyzing event-related potentials of native readers of French with either left hemisphere or right hemisphere dominance for language production (determined using a verb generation task), we were able to show that the posterior occipito-temporal areas involved in visual word processing are lateralized to the same hemisphere as language production. This finding could suggest top-down influences in the development of posterior visual word processing areas.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Mark T Mackay ◽  
Jian Chen ◽  
Joseph Yang ◽  
Belinda Stojanovski ◽  
Sebastian Grunt ◽  
...  

Objectives: To investigate correlations between infarct topography on acute diffusion weighted MRI, using voxel-based lesion-symptom mapping (VLSM), and later development of cerebral palsy (CP) and neurological impairments, in neonatal arterial ischaemic stroke (AIS). Methods: Newborns were recruited from prospective Australian and Swiss pediatric stroke registries. CP diagnosis was based on clinical examination. Language or cognitive-behavioural impairments were assessed using the Pediatric Stroke Outcome Measure dichotomized to good (0-0.5) or poor (≥1), at ≥18 months of age. Infarcts were manually segmented using axial DWI images, and coregistered to the Melbourne Children’s Regional Infant Brain 2.0 atlas. All lesions were projected to the left hemisphere to obtain binary union masks. VLSM was conducted using MATLAB SPM12 toolbox. A generalised linear model was used to correlate the lesion mask with outcomes. Voxel-wise t test statistics were calculated, and corrected for multiple comparisons using family-wise error rate (FWE). Results: 85 newborns (55 male) met inclusion criteria. Infarct lateralization was left hemisphere in 62%, right in 8% and bilateral in 29%. At median age 2.1 years (IQR1.9-2.6), 34% developed CP and 42% had neurological impairments. 54 ROIs were correlated with CP (t>4.33; FWE <0.05); the 12 highest correlated ROIs were the superior corona radiata, putamen, anterior corona radiata, insula, thalamus, external capsule, pars triangularis, caudate, lateral orbitofrontal cortex, superior temporal cortex, pars opercularis and precentral cortex. (Figure) No significant correlations were found for poor language or cognitive-behavioural outcomes. Conclusions: Cerebral palsy following neonatal AIS correlates predominantly with regions of acute infarction directly involved in motor control, or in functionally connected regions. Brain regions associated with language or cognitive-behavioural impairment are less clear.


2014 ◽  
Vol 8 (3) ◽  
pp. 236-242 ◽  
Author(s):  
Jaqueline de Carvalho Rodrigues ◽  
Denise Ren da Fontoura ◽  
Jerusa Fumagalli de Salles

OBJECTIVE: This study aimed to assess the strengths and difficulties in word and pseudoword writing in adults with left- and right-hemisphere strokes, and discuss the profiles of acquired dysgraphia in these individuals.METHODS: The profiles of six adults with acquired dysgraphia in left- or right-hemisphere strokes were investigated by comparing their performance on word and pseudoword writing tasks against that of neurologically healthy adults. A case series analysis was performed on the patients whose impairments on the task were indicative of acquired dysgraphia.RESULTS: Two patients were diagnosed with lexical dysgraphia (one with left hemisphere damage, and the other with right hemisphere damage), one with phonological dysgraphia, another patient with peripheral dysgraphia, one patient with mixed dysgraphia and the last with dysgraphia due to damage to the graphemic buffer. The latter patients all had left-hemisphere damage (LHD). The patterns of impairment observed in each patient were discussed based on the dual-route model of writing.CONCLUSION: The fact that most patients had LHD rather than right-hemisphere damage (RHD) highlights the importance of the former structure for word processing. However, the fact that lexical dysgraphia was also diagnosed in a patient with RHD suggests that these individuals may develop writing impairments due to damage to the lexical route, leading to heavier reliance on phonological processing. Our results are of significant importance to the planning of writing interventions in neuropsychology.


2011 ◽  
Vol 91 (4) ◽  
pp. 1357-1392 ◽  
Author(s):  
Angela D. Friederici

Language processing is a trait of human species. The knowledge about its neurobiological basis has been increased considerably over the past decades. Different brain regions in the left and right hemisphere have been identified to support particular language functions. Networks involving the temporal cortex and the inferior frontal cortex with a clear left lateralization were shown to support syntactic processes, whereas less lateralized temporo-frontal networks subserve semantic processes. These networks have been substantiated both by functional as well as by structural connectivity data. Electrophysiological measures indicate that within these networks syntactic processes of local structure building precede the assignment of grammatical and semantic relations in a sentence. Suprasegmental prosodic information overtly available in the acoustic language input is processed predominantly in a temporo-frontal network in the right hemisphere associated with a clear electrophysiological marker. Studies with patients suffering from lesions in the corpus callosum reveal that the posterior portion of this structure plays a crucial role in the interaction of syntactic and prosodic information during language processing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qiuping Cheng ◽  
Xue Wen ◽  
Guozhen Ye ◽  
Yanchi Liu ◽  
Yilong Kong ◽  
...  

AbstractMorality judgment usually refers to the evaluation of moral behavior`s ability to affect others` interests and welfare, while moral aesthetic judgment often implies the appraisal of moral behavior's capability to provide aesthetic pleasure. Both are based on the behavioral understanding. To our knowledge, no study has directly compared the brain activity of these two types of judgments. The present study recorded and analyzed brain activity involved in the morality and moral aesthetic judgments to reveal whether these two types of judgments differ in their neural underpinnings. Results reveled that morality judgment activated the frontal, parietal and occipital cortex previously reported for motor representations of behavior. Evaluation of goodness and badness showed similar patterns of activation in these brain regions. In contrast, moral aesthetic judgment elicited specific activations in the frontal, parietal and temporal cortex proved to be involved in the behavioral intentions and emotions. Evaluation of beauty and ugliness showed similar patterns of activation in these brain regions. Our findings indicate that morality judgment and moral aesthetic judgment recruit different cortical networks that might decode others' behaviors at different levels. These results contribute to further understanding of the essence of the relationship between morality judgment and aesthetic judgment.


2021 ◽  
Vol 15 ◽  
Author(s):  
Azam Meykadeh ◽  
Arsalan Golfam ◽  
Seyed Amir Hossein Batouli ◽  
Werner Sommer

Many bilingual individuals acquire their second language when entering primary school; however, very few studies have investigated morphosyntax processing in this population. Combining a whole-brain and region of interest (ROI)-based approach, we studied event-related fMRI during morphosyntactic processing, specifically person-number phi-features, in Turkish (L1) and Persian (L2) by highly proficient bilinguals who learned Persian at school entry. In a design with alternating language switching and pseudorandomized grammaticality conditions, two left-lateralized syntax-specific ROIs and 11 bilateral ROIs involved in executive functions (EF) were analyzed for the intensity of activation relative to a resting baseline. Our findings indicate a strong overlap of neural networks for L1 and L2, suggesting structural similarities of neuroanatomical organization. In all ROIs morphosyntactic processing invoked stronger activation in L1 than in L2. This may be a consequence of symmetrical switch costs in the alternating design used here, where the need for suppressing the non-required language is stronger for the dominant L1 when it is non-required as compared to the non-dominant L2, leading to a stronger rebound for L1 than L2 when the language is required. Both L1 and L2 revealed significant activation in syntax-specific areas in left hemisphere clusters and increased activation in EF-specific areas in right-hemisphere than left-hemisphere clusters, confirming syntax-specific functions of the left hemisphere, whereas the right hemisphere appears to subserve control functions required for switching languages. While previous reports indicate a leftward bias in planum temporale activation during auditory and linguistic processing, the present study shows the activation of the right planum temporale indicating its involvement in auditory attention. More pronounced grammaticality effect in left pars opercularis for L1 and in left pSTG for L2 indicate differences in the processing of morphosyntactic information in these brain regions. Nevertheless, the activation of pars opercularis and pSTG emphasize the centrality of these regions in the processing of person-number phi-features. Taken together, the present results confirm that morphosyntactic processing in bilinguals relates to composite, syntax-sensitive and EF-sensitive mechanisms in which some nodes of the language network are differentially involved.


Sign in / Sign up

Export Citation Format

Share Document