scholarly journals Overlapping but Language-Specific Mechanisms in Morphosyntactic Processing in Highly Competent L2 Acquired at School Entry: fMRI Evidence From an Alternating Language Switching Task

2021 ◽  
Vol 15 ◽  
Author(s):  
Azam Meykadeh ◽  
Arsalan Golfam ◽  
Seyed Amir Hossein Batouli ◽  
Werner Sommer

Many bilingual individuals acquire their second language when entering primary school; however, very few studies have investigated morphosyntax processing in this population. Combining a whole-brain and region of interest (ROI)-based approach, we studied event-related fMRI during morphosyntactic processing, specifically person-number phi-features, in Turkish (L1) and Persian (L2) by highly proficient bilinguals who learned Persian at school entry. In a design with alternating language switching and pseudorandomized grammaticality conditions, two left-lateralized syntax-specific ROIs and 11 bilateral ROIs involved in executive functions (EF) were analyzed for the intensity of activation relative to a resting baseline. Our findings indicate a strong overlap of neural networks for L1 and L2, suggesting structural similarities of neuroanatomical organization. In all ROIs morphosyntactic processing invoked stronger activation in L1 than in L2. This may be a consequence of symmetrical switch costs in the alternating design used here, where the need for suppressing the non-required language is stronger for the dominant L1 when it is non-required as compared to the non-dominant L2, leading to a stronger rebound for L1 than L2 when the language is required. Both L1 and L2 revealed significant activation in syntax-specific areas in left hemisphere clusters and increased activation in EF-specific areas in right-hemisphere than left-hemisphere clusters, confirming syntax-specific functions of the left hemisphere, whereas the right hemisphere appears to subserve control functions required for switching languages. While previous reports indicate a leftward bias in planum temporale activation during auditory and linguistic processing, the present study shows the activation of the right planum temporale indicating its involvement in auditory attention. More pronounced grammaticality effect in left pars opercularis for L1 and in left pSTG for L2 indicate differences in the processing of morphosyntactic information in these brain regions. Nevertheless, the activation of pars opercularis and pSTG emphasize the centrality of these regions in the processing of person-number phi-features. Taken together, the present results confirm that morphosyntactic processing in bilinguals relates to composite, syntax-sensitive and EF-sensitive mechanisms in which some nodes of the language network are differentially involved.

2000 ◽  
Vol 11 (3) ◽  
pp. 255-260 ◽  
Author(s):  
David A. Robertson ◽  
Morton Ann Gernsbacher ◽  
Seline J. Guidotti ◽  
Rachel R.W. Robertson ◽  
William Irwin ◽  
...  

We used functional magnetic resonance imaging (fMRI) to identify brain regions involved in the process of mapping coherent discourse onto a developing mental representation. We manipulated discourse coherence by presenting sentences with definite articles (which lead to more coherent discourse) or indefinite articles (which lead to less coherent discourse). Comprehending connected discourse, compared with reading unrelated sentences, produced more neural activity in the right than left hemisphere of the frontal lobe. Thus, the right hemisphere of the frontal lobe is involved in some of the processes underlying mapping. In contrast, left-hemisphere structures were associated with lower-level processes in reading (such as word recognition and syntactic processing). Our results demonstrate the utility of using fMRI to investigate the neural substrates of higher-level cognitive processes such as discourse comprehension.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 488
Author(s):  
Milda Sarkinaite ◽  
Rymante Gleizniene ◽  
Virginija Adomaitiene ◽  
Kristina Dambrauskiene ◽  
Nijole Raskauskiene ◽  
...  

Structural brain changes are found in suicide attempters and in patients with mental disorders. It remains unclear whether the suicidal behaviors are related to atrophy of brain regions and how the morphology of specific brain areas is changing with each suicide attempt. The sample consisted of 56 patients hospitalized after first suicide attempt (first SA) (n = 29), more than one suicide attempt (SA > 1) (n = 27) and 54 healthy controls (HC). Brain volume was measured using FreeSurfer 6.0 automatic segmentation technique. In comparison to HC, patients with first SA had significantly lower cortical thickness of the superior and rostral middle frontal areas, the inferior, middle and superior temporal areas of the left hemisphere and superior frontal area of the right hemisphere. In comparison to HC, patients after SA > 1 had a significantly lower cortical thickness in ten areas of frontal cortex of the left hemisphere and seven areas of the right hemisphere. The comparison of hippocampus volume showed a significantly lower mean volume of left and right parts in patients with SA > 1, but not in patients with first SA. The atrophy of frontal, temporal cortex and hippocampus parts was significantly higher in repeated suicide attempters than in patients with first suicide attempt.


2021 ◽  
Author(s):  
Lorin Friesen

Neurological research has made amazing strides in recent years. Enough is now known about what specific brain areas do to make it possible to start examining how various parts of the brain interact. What is missing is a general theory of cognition to tie all of this information together. Back in the 1980s, a cognitive theory was developed that began with a system of cognitive styles and was expanded through an in-depth study of biographies. It was discovered at that time that this theory mapped in a general way onto the brain. This cognitive theory, known as the theory of mental symmetry, has recently been tested as a meta-theory by using it to analyze a number of fields and theories dealing with human thought and behavior. This paper shows that personality traits that were discovered by mental symmetry correspond in detail to the functioning of brain regions described in current neurological papers. In brief, the cognitive model suggests that there are seven cognitive styles: There are four simple styles, and there are three composite styles that combine the thinking of the simple styles. Two of the simple styles use emotions and emphasize a circuit composed of orbitofrontal cortex, inferior frontal cortex, temporal lobe, and amygdala, with one in the left hemisphere and the other in the right hemisphere. The other two simple styles use confidence and emphasize a circuit consisting of dorsolateral frontal cortex, frontopolar cortex, parietal cortex, and hippocampus, again with one in the left hemisphere and the other in the right hemisphere. The three composite styles form a processing chain. The first composite style combines the two simple emotional styles and emphasizes the ventral striatum, and dopamine. This leads to the second composite style, which combines the two simple confidence styles and emphasizes the anterior cingulate, the dorsal striatum, and serotonin. This is followed by the third composite style which balances the functioning of the mind and emphasizes the thalamus and noradrenaline.


2019 ◽  
Vol 62 (11) ◽  
pp. 3973-3985 ◽  
Author(s):  
Swathi Kiran ◽  
Erin L. Meier ◽  
Jeffrey P. Johnson

Purpose Despite a tremendous amount of research in this topic, the precise neural mechanisms underlying language recovery remain unclear. Much of the evidence suggests that activation of remaining left-hemisphere tissue, including perilesional areas, is linked to the best treatment outcomes, yet recruitment of the right hemisphere for various language tasks has also been linked to favorable behavioral outcomes. In this review article, we propose a framework of language recovery that incorporates a network-based view of the brain regions involved in recovery. Method We review evidence from the extant literature and work from our own laboratory to identify findings consistent with our proposed framework and identify gaps in our current knowledge. Results Expanding on Heiss and Thiel's (2006) hierarchy of language recovery, we identify 4 emerging themes: (a) Several bilateral regions constitute a network engaged in language recovery; (b) spared left-hemisphere regions are important components of the network engaged in language recovery; (c) as damage increases in the left hemisphere, activation expands to the right hemisphere and domain-general regions; and (d) patients with efficient, control-like network topology show greater improvement than patients with abnormal topology. We propose a mechanistic model of language recovery that accounts for individual differences in behavior, network topology, and treatment responsiveness. Conclusion Continued work in this topic will lead us to a better understanding of the mechanisms underlying language recovery, biomarkers that influence recovery, and, consequently, more personalized treatment options for individual patients. Presentation Video https://doi.org/10.23641/asha.10257590


2013 ◽  
Vol 27 (3) ◽  
pp. 142-148 ◽  
Author(s):  
Konstantinos Trochidis ◽  
Emmanuel Bigand

The combined interactions of mode and tempo on emotional responses to music were investigated using both self-reports and electroencephalogram (EEG) activity. A musical excerpt was performed in three different modes and tempi. Participants rated the emotional content of the resulting nine stimuli and their EEG activity was recorded. Musical modes influence the valence of emotion with major mode being evaluated happier and more serene, than minor and locrian modes. In EEG frontal activity, major mode was associated with an increased alpha activation in the left hemisphere compared to minor and locrian modes, which, in turn, induced increased activation in the right hemisphere. The tempo modulates the arousal value of emotion with faster tempi associated with stronger feeling of happiness and anger and this effect is associated in EEG with an increase of frontal activation in the left hemisphere. By contrast, slow tempo induced decreased frontal activation in the left hemisphere. Some interactive effects were found between mode and tempo: An increase of tempo modulated the emotion differently depending on the mode of the piece.


Author(s):  
Elizabeth Schechter

This chapter defends the 2-agents claim, according to which the two hemispheres of a split-brain subject are associated with distinct intentional agents. The empirical basis of this claim is that, while both hemispheres are the source or site of intentions, the capacity to integrate them in practical reasoning no longer operates interhemispherically after split-brain surgery. As a result, the right hemisphere-associated agent, R, and the left hemisphere-associated agent, L, enjoy intentional autonomy from each other. Although the positive case for the 2-agents claim is grounded mainly in experimental findings, the claim is not contradicted by what we know of split-brain subjects’ ordinary behavior, that is, the way they act outside of experimental conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Martha M. Shiell ◽  
François Champoux ◽  
Robert J. Zatorre

After sensory loss, the deprived cortex can reorganize to process information from the remaining modalities, a phenomenon known as cross-modal reorganization. In blind people this cross-modal processing supports compensatory behavioural enhancements in the nondeprived modalities. Deaf people also show some compensatory visual enhancements, but a direct relationship between these abilities and cross-modally reorganized auditory cortex has only been established in an animal model, the congenitally deaf cat, and not in humans. Using T1-weighted magnetic resonance imaging, we measured cortical thickness in the planum temporale, Heschl’s gyrus and sulcus, the middle temporal area MT+, and the calcarine sulcus, in early-deaf persons. We tested for a correlation between this measure and visual motion detection thresholds, a visual function where deaf people show enhancements as compared to hearing. We found that the cortical thickness of a region in the right hemisphere planum temporale, typically an auditory region, was greater in deaf individuals with better visual motion detection thresholds. This same region has previously been implicated in functional imaging studies as important for functional reorganization. The structure-behaviour correlation observed here demonstrates this area’s involvement in compensatory vision and indicates an anatomical correlate, increased cortical thickness, of cross-modal plasticity.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii44-ii44
Author(s):  
A T J van der Boog ◽  
S David ◽  
A M M Steennis ◽  
T J Snijders ◽  
J W Dankbaar ◽  
...  

Abstract BACKGROUND Surgical treatment of diffuse glioma is performed to reduce tumor mass effect and to pave the way for adjuvant (chemo)radiotherapy. As a complication of surgery, ischemic lesions are often found in the postoperative setting. Not only can these lesion induce neurological deficits, but their volume has also been associated with reduced survival time. Prior studies suggest areas with a singular vascular supply to be more prone to postoperative ischemic lesions, although the precise cause is yet unknown. The aim of this study was to explore the volumetric and spatial distributions of postoperative ischemic lesions and their relation to arterial territories in glioma patients. MATERIAL AND METHODS We accessed a retrospective database of 144 adult cases with WHO grade II-IV supratentorial gliomas, who received surgery and postoperative MRI within 3 days in 2012–2014. We identified 93 patients with postoperative ischemia, defined as new confluent diffusion restriction on DWI. Ischemic lesions were manually delineated and spatially normalized to stereotaxic MNI space. Voxel-based analysis (VBA) was performed to compare presence and absence of postoperative ischemia. False positive results were eliminated by family-wise error correction. Areas of ischemia were labeled using an arterial territory map, the Harvard-Oxford cortical and subcortical atlases and the XTRACT white matter atlas. RESULTS Median volume of confluent ischemia was 3.52cc (IQR 2.15–5.94). 23 cases had only ischemic lesion in the left hemisphere, 46 in the right hemisphere and 24 bilateral. Median volume was 3.08cc (IQR 1.35–5.72) in left-sided lesions and 2.47cc (1.01–4.24) in right-sided lesions. Volume of ischemic lesions was not associated with survival after 1, 2 or 5 years. A cluster of 125.18cc was found to be significantly associated with development of postoperative ischemia. 73% of this cluster was situated in the arterial territory of the right middle cerebral artery (MCA), limited by the border of the posterior cerebral artery (PCA), and the watershed area between the right MCA and the right anterior cerebral artery (ACA). Significant areas were located in the frontal lobes, spanning into the right temporo-occipital region, and predominantly included right and left thalamus, caudate nucleus, putamen, pallidum, as well as right temporal gyri and insular cortex, and parts of the right corticospinal tract, longitudinal fasciculi and superior thalamic radiation. CONCLUSION We found slightly more and larger ischemic lesions in the right than left hemisphere after glioma resection. A statistically significant cluster of voxels of postoperative ischemia was found in the territory of the right MCA and watershed area of the right ACA. Exploration of the spatial distribution of these lesions could help elucidate their etiology and form the basis for predicting clinically relevant postoperative ischemia.


Psihologija ◽  
2008 ◽  
Vol 41 (2) ◽  
pp. 195-211
Author(s):  
Jasmina Vuksanovic ◽  
Milena Djuric

Fluency tests are frequently used in clinical practice to asses executive functions. The literature data are not unequivocal although in a great number of papers is pointed out the importance of the left hemisphere, specially of the left frontal lobes in the mediation of phonological fluency and the right hemisphere in the mediation of nonverbal fluency. This paper considers the suitability of fluency tests for the detection of left versus right seizure laterality. The sample consisted of thirty-two epilepsy patients divided into two groups: LHF-participants with the seizure focus in the left hemisphere (n=16), and DHF-participants with the seizure focus in the right hemisphere (n=16), and K-the control group of t age-matched healthy children (n=50) aged 7-11 years. The qualitative and quantitative comparison of the phonological and nonverbal fluency performance was carried out in consideration of the seizure laterality as well as compared to the healthy controls. The results of phonological fluency performance revealed that the performance of the LHF group was significantly reduced as compared to both DHF and K group. The analysis of nonverbal fluency performance revealed that the performance of the DHF group was significantly reduced as compared to both LHF and K group The qualitative analysis obtained valuable data, which could additionally contribute to the neuropsychological evaluation of the left versus right seizure laterality.


Sign in / Sign up

Export Citation Format

Share Document