scholarly journals TRPV2 channel negatively controls glioma cell proliferation and resistance to Fas-induced apoptosis in ERK-dependent manner

2010 ◽  
Vol 31 (5) ◽  
pp. 794-803 ◽  
Author(s):  
Massimo Nabissi ◽  
Maria Beatrice Morelli ◽  
Consuelo Amantini ◽  
Valerio Farfariello ◽  
Lucia Ricci-Vitiani ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1604
Author(s):  
Yiqun Dai ◽  
Xiaolong Sun ◽  
Bohan Li ◽  
Hui Ma ◽  
Pingping Wu ◽  
...  

Nasopharyngeal carcinoma (NPC) is a common malignant head and neck tumor. Drug resistance and distant metastasis are the predominant cause of treatment failure in NPC patients. Hispidulin is a flavonoid extracted from the bioassay-guided separation of the EtOH extract of Salvia plebeia with strong anti-proliferative activity in nasopharyngeal carcinoma cells (CNE-2Z). In this study, the effects of hispidulin on proliferation, invasion, migration, and apoptosis were investigated in CNE-2Z cells. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay and the colony formation assay revealed that hispidulin could inhibit CNE-2Z cell proliferation. Hispidulin (25, 50, 100 μM) also induced apoptosis in a dose-dependent manner in CNE-2Z cells. The expression of Akt was reduced, and the expression of the ratio of Bax/Bcl-2 was increased. In addition, scratch wound and transwell assays proved that hispidulin (6.25, 12.5, 25 μM) could inhibited the migration and invasion in CNE-2Z cells. The expressions of HIF-1α, MMP-9, and MMP-2 were decreased, while the MMPs inhibitor TIMP1 was enhanced by hispidulin. Moreover, hispidulin exhibited potent suppression tumor growth and low toxicity in CNE-2Z cancer-bearing mice at a dosage of 20 mg/kg/day. Thus, hispidulin appears to be a potentially effective agent for NPC treatment.


2021 ◽  
Vol 20 ◽  
pp. 153303382199000
Author(s):  
Gaolian Zhang ◽  
Meng Xia ◽  
Jianhui Guo ◽  
Yi Huang ◽  
Jianrong Huang ◽  
...  

Aberrant expression of microRNAs (miRNAs) has been reported to play a role in tumorigenesis. Dysfunction of miR-1296 was found in a variety of cancers, however, the function of miR-1296 in the progression of glioma remains largely understood. Here, our results showed that miR-1296 was significantly down-regulated in glioma tissues and cell lines. Decreased expression of miR-1296 was associated with the tumor size, WHO grade and karnofsky performance scale (KPS) of glioma patients. Low expression of miR-1296 was significantly correlated with the shorter 5-year overall survival of glioma patients. Overexpression of miR-1296 inhibited the proliferation, colony formation, migration and induced apoptosis of glioma cells. MiR-1296 was found to bind the 3’-untranslated region (UTR) of ABL proto-oncogene 2 (ABL2) and subsequently repressed both the mRNA and protein expression of ABL2. ABL2 was overexpressed in glioma tissues and inversely correlated with that of miR-1296. Ectopic expressed ABL2 could reverse the inhibitory effects of miR-1296 on glioma cell proliferation. Our results illustrated the novel tumor-suppressive function of miR-1296 in glioma via repressing ABL2, suggesting a potential application of miR-1296 in the treatment of glioma.


2015 ◽  
Vol 71 ◽  
pp. 7-14 ◽  
Author(s):  
Jihong Zhang ◽  
Xuhai Gong ◽  
Kaiyu Tian ◽  
Dongkai Chen ◽  
Jiahang Sun ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e77299 ◽  
Author(s):  
Mohammad A. Y. Alqudah ◽  
Supreet Agarwal ◽  
Maha S. Al-Keilani ◽  
Zita A. Sibenaller ◽  
Timothy C. Ryken ◽  
...  

Author(s):  
Li Hu ◽  
Li-Li Li ◽  
Zhi-Guo Lin ◽  
Zhi-Chao Jiang ◽  
Hong-Xing Li ◽  
...  

The potassium (K+) channel plays an important role in the cell cycle and proliferation of tumor cells, while its role in brain glioma cells and the signaling pathways remains unclear. We used tetraethylammonium (TEA), a nonselective antagonist of big conductance K+ channels, to block K+ channels in glioma cells, and antioxidant N-acetyl-l-cysteine (NAC) to inhibit production of intracellular reactive oxygen species (ROS). TEA showed an antiproliferation effect on C6 and U87 glioma cells in a time-dependent manner, which was accompanied by an increased intracellular ROS level. Antioxidant NAC pretreatment reversed TEA-mediated antiproliferation and restored ROS level. TEA treatment also caused significant increases in mRNA and protein levels of tumor-suppressor proteins p53 and p21, and the upregulation was attenuated by pretreatment of NAC. Our results suggest that K+ channel activity significantly contributes to brain glioma cell proliferation via increasing ROS, and it might be an upstream factor triggering the activation of the p53/p21Cip1-dependent signaling pathway, consequently leading to glioma cell cycle arrest.


Sign in / Sign up

Export Citation Format

Share Document