scholarly journals Loss of LKB1 and PTEN tumor suppressor genes in the ovarian surface epithelium induces papillary serous ovarian cancer

2013 ◽  
Vol 35 (3) ◽  
pp. 546-553 ◽  
Author(s):  
Pradeep S. Tanwar ◽  
Gayatry Mohapatra ◽  
Sarah Chiang ◽  
David A. Engler ◽  
LiHua Zhang ◽  
...  
1995 ◽  
pp. 145-156 ◽  
Author(s):  
H. Salazar ◽  
A. K. Godwin ◽  
L. A. Getts ◽  
J. R. Testa ◽  
M. Daly ◽  
...  

2001 ◽  
Vol 22 (2) ◽  
pp. 255-288 ◽  
Author(s):  
Nelly Auersperg ◽  
Alice S. T. Wong ◽  
Kyung-Chul Choi ◽  
Sung Keun Kang ◽  
Peter C. K. Leung

Abstract The epithelial ovarian carcinomas, which make up more than 85% of human ovarian cancer, arise in the ovarian surface epithelium (OSE). The etiology and early events in the progression of these carcinomas are among the least understood of all major human malignancies because there are no appropriate animal models, and because methods to culture OSE have become available only recently. The objective of this article is to review the cellular and molecular mechanisms that underlie the control of normal and neoplastic OSE cell growth, differentiation, and expression of indicators of neoplastic progression. We begin with a brief discussion of the development of OSE, from embryonic to the adult. The pathological and genetic changes of OSE during neoplastic progression are next summarized. The histological characteristics of OSE cells in culture are also described. Finally, the potential involvement of hormones, growth factors, and cytokines is discussed in terms of their contribution to our understanding of the physiology of normal OSE and ovarian cancer development.


2020 ◽  
Vol 102 (5) ◽  
pp. 1055-1064 ◽  
Author(s):  
Mingxin Shi ◽  
Allison E Whorton ◽  
Nikola Sekulovski ◽  
Marilène Paquet ◽  
James A MacLean ◽  
...  

Abstract Ovarian cancer (OvCa) remains the most common cause of death from gynecological malignancies. Genetically engineered mouse models have been used to study initiation, origin, progression, and/or mechanisms of OvCa. Based on the clinical features of OvCa, we examined a quadruple combination of pathway perturbations including PTEN, TRP53, RB1, and/or CDH1. To characterize the cancer-promoting events in the ovarian surface epithelium (OSE), Amhr2cre/+ mice were used to ablate floxed alleles of Pten, Trp53, and Cdh1, which were crossed with TgK19GT121 mice to inactivate RB1 in KRT19-expressing cells. Inactivation of PTEN, TRP53, and RB1 with or without CDH1 led to the development of type I low-grade OvCa with enlarged serous papillary carcinomas and some high-grade serous carcinomas (HGSCs) in older mice. Initiation of epithelial hyperplasia and micropapillary carcinoma started earlier at 1 month in the triple mutations of Trp53, Pten, and Rb1 mice as compared to 2 months in quadruple mutations of Trp53, Pten, Rb1, and Cdh1 mice, whereas both genotypes eventually developed enlarged proliferating tumors that invaded into the ovary at 3–4 months. Mice with triple and quadruple mutations developed HGSC and/or metastatic tumors, which disseminated into the peritoneal cavity at 4–6 months. In summary, inactivation of PTEN, TRP53, and RB1 initiates OvCa from the OSE. Additional ablation of CDH1 further increased persistence of tumor dissemination and ascites fluid accumulation enhancing peritoneal metastasis.


Sign in / Sign up

Export Citation Format

Share Document