scholarly journals Deregulation of PP2A-Akt Interaction Contributes to Sucrose Non-Fermenting Related Kinase (SNRK) Deficiency Induced Insulin Resistance in Adipose Tissue (P21-071-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jie Li ◽  
Ran An ◽  
Simin Liu ◽  
Haiyan Xu

Abstract Objectives Sucrose Non-Fermenting Related Kinase (SNRK), a serine/threonine kinase, is a novel member of the AMPK/SNF1 family. We previously reported that adipose specific SNRK deficiency induced systemic inflammation and insulin resistance. In this study, we aimed to dissect the role of SNRK in white versus brown adipose tissue in insulin signaling and glucose homeostasis. Methods The SNRKloxp/loxp mice were mated with adiponectin-Cre (A-Cre) transgenic mice to generate the adipose tissue specific knockout model (SNRK−/−, A-Cre), and with UCP1-Cre (U-Cre) mice to generate the brown adipose tissue (BAT) specific knockout model (SNRK−/−, U-Cre). RNA sequencing and phosphoproteomics analysis were applied to identify the signaling pathways affected by SNRK deficiency and the potential substrate of SNRK. Results SNRK deletion exclusively in BAT is sufficient to impair insulin signaling and glucose uptake without inducing local and systemic inflammation. Phosphoproteomic study identified PPP2R5D as the potential substrate of SNRK that regulates insulin signaling through controlling PP2A activity. Dephosphorylated PPP2R5D promotes constitutive assembly of PP2A-Akt complex in SNRK deficient primary brown adipocytes and BAT, therefore reduces insulin stimulated Akt phosphorylation and subsequent glucose uptake. RNA sequencing data provided further evidence to show that the PI3K/AKT signaling pathway is suppressed by SNRK deletion in primary brown adipocytes. Conclusions Insulin resistance in BAT alone is not sufficient to impact whole body glucose homeostasis, indicating that the role of SNRK in WAT and inflammation might be critical for observed systemic insulin resistance in SNRK−/−, A-Cre mice. Funding Sources National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK103699).

2019 ◽  
Vol 854 ◽  
pp. 354-364 ◽  
Author(s):  
Kripa Shankar ◽  
Durgesh Kumar ◽  
Sanchita Gupta ◽  
Salil Varshney ◽  
Sujith Rajan ◽  
...  

2013 ◽  
Vol 2 (2) ◽  
pp. 85 ◽  
Author(s):  
Qin Zhang ◽  
BangYi Ma ◽  
Eirka Cyr ◽  
Lacey Mcintosh ◽  
Alan Fischman ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Craig Porter ◽  
Elisabet Børsheim ◽  
Labros S. Sidossis

The function ascribed to brown adipose tissue in humans has long been confined to thermoregulation in neonates, where this thermogenic capacity was thought lost with maturation. Recently, brown adipose tissue depots have been identified in adult humans. The significant oxidative capacity of brown adipocytes and the ability of their mitochondria to respire independently of ATP production, has led to renewed interest in the role that these adipocytes play in human energy metabolism. In our view, there is a need for robust physiological studies determining the relationship between molecular signatures of brown adipose tissue, adipose tissue mitochondrial function, and whole body energy metabolism, in order to elucidate the significance of thermogenic adipose tissue in humans. Until such information is available, the role of thermogenic adipose tissue in human metabolism and the potential that these adipocytes may prevent or treat obesity and metabolic diseases in humans will remain unknown. In this article, we summarize the recent literature pertaining to brown adipose tissue function with the aims of drawing the readers’ attention to the lack of data concerning the role of brown adipocytes in human physiology, and to the potential limitations of current research strategies.


2021 ◽  
Vol 22 (4) ◽  
pp. 1530
Author(s):  
Katarzyna Maliszewska ◽  
Adam Kretowski

The increased worldwide prevalence of obesity, insulin resistance, and their related metabolic complications have prompted the scientific world to search for new possibilities to combat obesity. Brown adipose tissue (BAT), due to its unique protein uncoupling protein 1 (UPC1) in the inner membrane of the mitochondria, has been acknowledged as a promising approach to increase energy expenditure. Activated brown adipocytes dissipate energy, resulting in heat production. In other words, BAT burns fat and increases the metabolic rate, promoting a negative energy balance. Moreover, BAT alleviates metabolic complications like dyslipidemia, impaired insulin secretion, and insulin resistance in type 2 diabetes. The aim of this review is to explore the role of BAT in total energy expenditure, as well as lipid and glucose homeostasis, and to discuss new possible activators of brown adipose tissue in humans to treat obesity and metabolic disorders.


2017 ◽  
Vol 8 (1) ◽  
pp. 23-29
Author(s):  
M. O. Ryznychuk ◽  
V. P. Pishak

The article highlights the role of desynchronosis and certain genetic factors in the development of obesity. Some pathogenetic links of obesity and the influence of melatonin on them are analyzed.Desynchronosis is one of the causes of obesity as a result of dysregulatory changes in the chronoperiodic system – between suprachiasmatic nuclei of the hypothalamus and secretory activity of the pineal gland.In obesity there are some changes in circadian patterns of important physiological parameters. These include acrophases of blood pressure; rhythm of hormone secretion, including insulin; electrolytes; sleep-wake cycle displaced for a period of a day, which is a deviation from the normal course. Phase discrepancies of established circadian oscillations of physiological processes arise. Preconditions of fat metabolism imbalance, particularly visfatin, apelin and vaspin – components of atherosclerotic lesions, gradually emerge.There is abundant evidence for close relationships between metabolism and circadian mechanisms. It is proved, that there is a strong direct impact of endogenous circadian rhythms on the metabolic pathways that do not depend on food intake or sleep. A potential low molecular weight of biomarkers of human circadian phases has been identified. A number of key metabolic enzymes in tissues such as the liver, adipose tissue or the pancreas are chronodependent. Desynchronosis phenomena caused by genetic or environmental factors can lead to serious metabolic disorders, including obesity, insulin resistance and metabolic syndrome.Genesis of pineal removal-induced insulin resistance and reduced glucose tolerance in cells is related to the consequences of melatonin absence, which leads to abnormalities in insulin signaling pathways and reduced GLUT4 gene expression and protein content.Insulin-sensitive tissues (white and brown adipose tissue, skeletal and heart muscles) after pineal removal are characterized by a significant reduction of GLUT4 mRNA and the content of microsomal and membrane proteins, which are compensated during treatment by melatonin. Functional synergy exists between melatonin and insulin. Melatonin is able through the membrane receptors MT1 to cause rapid tyrosine phosphorylation, activate tyrosine kinase of beta subunits of insulin receptors and mobilize several intracellular stages of insulin-signaling pathway transduction.Thus, the protective effect of melatonin in cases of disturbance to the carbohydrate metabolism is manifested in the formation of circadian periodicity by modulating the expression of time genes.


2020 ◽  
Vol 247 (1) ◽  
pp. 39-52
Author(s):  
Iyad H Manaserh ◽  
Emily Maly ◽  
Marziyeh Jahromi ◽  
Lakshmikanth Chikkamenahalli ◽  
Joshua Park ◽  
...  

The important role of astrocytes in the central control of energy balance and glucose homeostasis has recently been recognized. Changes in thermoregulation can lead to metabolic dysregulation, but the role of astrocytes in this process is not yet clear. Therefore, we generated mice congenitally lacking insulin receptors (Ir) in astrocytes (IrKOGFAP mice) to investigate the involvement of astrocyte insulin signaling. IrKOGFAP mice displayed significantly lower energy expenditure and a strikingly lower basal and fasting body temperature. When exposed to cold, however, they were able to mount a thermogenic response. IrKOGFAP mice displayed sex differences in metabolic function and thermogenesis that may contribute to the development of obesity and type II diabetes as early as 2 months of age. While brown adipose tissue exhibited higher adipocyte size in both sexes, more apoptosis was seen in IrKOGFAP males. Less innervation and lower BAR3 expression levels were also observed in IrKOGFAP brown adipose tissue. These effects have not been reported in models of astrocyte Ir deletion in adulthood. In contrast, body weight and glucose regulatory defects phenocopied such models. These findings identify a novel role for astrocyte insulin signaling in the development of normal body temperature control and sympathetic activation of BAT. Targeting insulin signaling in astrocytes has the potential to serve as a novel target for increasing energy expenditure.


2019 ◽  
Vol 20 (20) ◽  
pp. 5150 ◽  
Author(s):  
Chuanhai Zhang ◽  
Junyu Liu ◽  
Xiaoyun He ◽  
Yao Sheng ◽  
Cui Yang ◽  
...  

Obesity is associated with disrupted energy homeostasis and intestinal dysbiosis. Caulis Spatholobi, traditional Chinese medicine for herbal therapy, contains a wide range of bioactive compounds and has a specific pharmacological function. However, its effects on obesity and related metabolic disorder have remained largely unexplored. In this study, we showed that the water extract of Caulis Spatholobi (WECS) has a significant effect in inhibiting body weight gain, decreasing adiposity, maintaining glucose homeostasis, reducing insulin resistance and improving hepatic steatosis in diet-introduced obesity (DIO) mice. Besides, the administration of WECS significantly increased the expression levels of genes involved in the brown adipose tissue (BAT) activation and thermogenesis in DIO mice. Also, the activation of BAT treated with WECS was also confirmed in BAT primary cells. Mechanisms, the improvement of glucose homeostasis and insulin resistance may be related to the upregulated MAPK and AMPK pathways in white adipose tissue (WAT) and BAT. Notably, WECS also improved the obesity-induced gut microbiota dysbiosis, which induced an increase of anti-obesity and anti-diabetes related bacteria genus. In conclusion, Caulis Spatholobi can ameliorate obesity through activating brown adipose tissue and modulating the composition of gut microbiota. Our findings provide a novel perspective on Chinese medicine applications and provide a promising therapeutic approach for the treatment of obesity and metabolic disorders.


2013 ◽  
Vol 34 (4) ◽  
pp. 463-500 ◽  
Author(s):  
Samantha Hocking ◽  
Dorit Samocha-Bonet ◽  
Kerry-Lee Milner ◽  
Jerry R. Greenfield ◽  
Donald J. Chisholm

Abstract Human adiposity has long been associated with insulin resistance and increased cardiovascular risk, and abdominal adiposity is considered particularly adverse. Intra-abdominal fat is associated with insulin resistance, possibly mediated by greater lipolytic activity, lower adiponectin levels, resistance to leptin, and increased inflammatory cytokines, although the latter contribution is less clear. Liver lipid is also closely associated with, and likely to be an important contributor to, insulin resistance, but it may also be in part the consequence of the lipogenic pathway of insulin action being up-regulated by hyperinsulinemia and unimpaired signaling. Again, intramyocellular triglyceride is associated with muscle insulin resistance, but anomalies include higher intramyocellular triglyceride in insulin-sensitive athletes and women (vs men). Such issues could be explained if the “culprits” were active lipid moieties such as diacylglycerol and ceramide species, dependent more on lipid metabolism and partitioning than triglyceride amount. Subcutaneous fat, especially gluteofemoral, appears metabolically protective, illustrated by insulin resistance and dyslipidemia in patients with lipodystrophy. However, some studies suggest that deep sc abdominal fat may have adverse properties. Pericardial and perivascular fat relate to atheromatous disease, but not clearly to insulin resistance. There has been recent interest in recognizable brown adipose tissue in adult humans and its possible augmentation by a hormone, irisin, from exercising muscle. Brown adipose tissue is metabolically active, oxidizes fatty acids, and generates heat but, because of its small and variable quantities, its metabolic importance in humans under usual living conditions is still unclear. Further understanding of specific roles of different lipid depots may help new approaches to control obesity and its metabolic sequelae.


1991 ◽  
Vol 261 (2) ◽  
pp. E204-E213 ◽  
Author(s):  
A. Marette ◽  
Y. Deshaies ◽  
A. J. Collet ◽  
O. Tulp ◽  
L. J. Bukowiecki

The effects of norepinephrine and insulin on thermogenesis were investigated in adipocytes isolated from brown adipose tissue (BAT) of obese non-diabetic LA/N-cp rats (obese LA), obese diabetic SHR/N-cp rats (obese SHR), and their corresponding lean controls. The maximal calorigenic response (Vmax) and the sensitivity [50% effective concentration (EC50)] to norepinephrine (1 microM) were markedly reduced in brown adipocytes from obese SHR rats compared with their lean controls (3- to 4-fold decrease in the Vmax and 50% increase in the EC50 value). In the same cells, there was a similar decrease in the respiratory response to dibutyryl adenosine 3',5'-cyclic monophosphate, indicating the presence of a major postreceptor defect. Remarkably, total BAT cytochrome oxidase activity (an index of cellular mitochondrial content) was also diminished three to four times in obese SHR rats, suggesting that a reduced BAT mitochondrial content is responsible for the decreased thermogenesis. Ultrastructural studies revealed that the cytoplasm of brown adipocytes from obese SHR rats contained a large lipid droplet, numerous tiny droplets, and few atypical mitochondria with loosely packed cristae. Adipocytes from obese SHR rats were also characterized by a significant resistance to the antithermogenic effect of insulin but not to that of the nonmetabolizable adenosine analogue N6-phenylisopropyl adenosine. In contrast, all the above biochemical parameters were normal in obese LA rats. These results demonstrate that the marked insulin resistance in BAT of obese SHR rats is associated with a decreased responsiveness and sensitivity to norepinephrine, indicating the presence of receptor and postreceptor defects. It is suggested that insulin resistance and/or diabetes in SHR/N-cp rats lead to a decreased mitochondriogenesis in BAT, which results in a reduced thermogenic capacity, thereby contributing to the development of obesity.


2014 ◽  
Vol 306 (10) ◽  
pp. E1205-E1216 ◽  
Author(s):  
Victoria L. B. Nelson ◽  
Ya-Ping Jiang ◽  
Kathleen G. Dickman ◽  
Lisa M. Ballou ◽  
Richard Z. Lin

Adipose tissue is a highly insulin-responsive organ that contributes to metabolic regulation. Insulin resistance in the adipose tissue affects systemic lipid and glucose homeostasis. Phosphoinositide 3-kinase (PI3K) mediates downstream insulin signaling in adipose tissue, but its physiological role in vivo remains unclear. Using Cre recombinase driven by the aP2 promoter, we created mice that lack the class 1A PI3K catalytic subunit p110α or p110β specifically in the white and brown adipose tissue. The loss of p110α, not p110β, resulted in increased adiposity, glucose intolerance and liver steatosis. Mice lacking p110α in adipose tissue exhibited a decrease in energy expenditure but no change in food intake or activity compared with control animals. This low energy expenditure is a consequence of low cellular respiration in the brown adipocytes caused by a decrease in expression of key mitochondrial genes including uncoupling protein-1. These results illustrate a critical role of p110α in the regulation of energy expenditure through modulation of cellular respiration in the brown adipose tissue and suggest that compromised insulin signaling in adipose tissue might be involved in the onset of obesity.


Sign in / Sign up

Export Citation Format

Share Document