scholarly journals Resting Brain Fluctuations Are Intrinsically Coupled to Visual Response Dynamics

2020 ◽  
Author(s):  
Michaël E Belloy ◽  
Jacob Billings ◽  
Anzar Abbas ◽  
Amrit Kashyap ◽  
Wen-Ju Pan ◽  
...  

Abstract How do intrinsic brain dynamics interact with processing of external sensory stimuli? We sought new insights using functional magnetic resonance imaging to track spatiotemporal activity patterns at the whole brain level in lightly anesthetized mice, during both resting conditions and visual stimulation trials. Our results provide evidence that quasiperiodic patterns (QPPs) are the most prominent component of mouse resting brain dynamics. These QPPs captured the temporal alignment of anticorrelation between the default mode (DMN)- and task-positive (TPN)-like networks, with global brain fluctuations, and activity in neuromodulatory nuclei of the reticular formation. Specifically, the phase of QPPs prior to stimulation could significantly stratify subsequent visual response magnitude, suggesting QPPs relate to brain state fluctuations. This is the first observation in mice that dynamics of the DMN- and TPN-like networks, and particularly their anticorrelation, capture a brain state dynamic that affects sensory processing. Interestingly, QPPs also displayed transient onset response properties during visual stimulation, which covaried with deactivations in the reticular formation. We conclude that QPPs appear to capture a brain state fluctuation that may be orchestrated through neuromodulation. Our findings provide new frontiers to understand the neural processes that shape functional brain states and modulate sensory input processing.

2019 ◽  
Author(s):  
Michaël E. Belloy ◽  
Jacob Billings ◽  
Anzar Abbas ◽  
Amrit Kashyap ◽  
Wen-ju Pan ◽  
...  

AbstractHow do intrinsic brain dynamics interact with processing of external sensory stimuli? We sought new insights using functional (f)MRI to track spatiotemporal activity patterns at the whole brain level in lightly anesthetized mice, during both resting conditions and visual stimulation trials. Our results provide evidence that quasiperiodic patterns (QPPs) govern mouse resting brain dynamics. QPPs captured the temporal alignment of global brain fluctuations, anti-correlation of the Default Mode (DMN)- and Task Positive (TPN)-like networks, and activity in neuromodulatory nuclei of the reticular formation. While visual stimulation could trigger a transient spatiotemporal pattern highly similar to intrinsic QPPs, global signal fluctuations and QPPs during rest periods could explain variance in the following visual responses. QPPs and the global signal thus appeared to capture a common arousal-related brain-state fluctuation, orchestrated through neuromodulation. Our findings provide new frontiers to understand the neural processes that shape functional brain states and modulate sensory input processing.


2018 ◽  
Vol 2 ◽  
pp. 239821281879482
Author(s):  
Miles A. Whittington ◽  
Roger D. Traub ◽  
Natalie E. Adams

Neuronal oscillations represent the most obvious feature of electrical activity in the brain. They are linked in general with global brain state (awake, asleep, etc.) and specifically with organisation of neuronal outputs during sensory perception and cognitive processing. Oscillations can be generated by individual neurons on the basis of interaction between inputs and intrinsic conductances but are far more commonly seen at the local network level in populations of interconnected neurons with diverse arrays of functional properties. It is at this level that the brain’s rich and diverse library of oscillatory time constants serve to temporally organise large-scale neural activity patterns. The discipline is relatively mature at the microscopic (cell, local network) level – although novel discoveries are still commonplace – but requires a far greater understanding of mesoscopic and macroscopic brain dynamics than we currently hold. Without this, extrapolation from the temporal properties of neurons and their communication strategies up to whole brain function will remain largely theoretical. However, recent advances in large-scale neuronal population recordings and more direct, higher fidelity, non-invasive measurement of whole brain function suggest much progress is just around the corner.


2021 ◽  
Author(s):  
Matthijs N Oude Lohuis ◽  
Jean L Pie ◽  
Pietro Marchesi ◽  
Jorrit S Montijn ◽  
Christiaan P J de Kock ◽  
...  

The transformation of sensory inputs into behavioral outputs is characterized by an interplay between feedforward and feedback operations in cortical hierarchies. Even in simple sensorimotor transformations, recurrent processing is often expressed in primary cortices in a late phase of the cortical response to sensory stimuli. This late phase is engaged by attention and stimulus complexity, and also encodes sensory-independent factors, including movement and report-related variables. However, despite its pervasiveness, the nature and function of late activity in perceptual decision-making remain unclear. We tested whether the function of late activity depends on the complexity of a sensory change-detection task. Complexity was based on increasing processing requirements for the same sensory stimuli. We found that the temporal window in which V1 is necessary for perceptual decision-making was extended when we increased task complexity, independently of the presented visual stimulus. This window overlapped with the emergence of report-related activity and decreased noise correlations in V1. The onset of these co-occurring activity patterns was time-locked to and preceded reaction time, and predicted the reduction in behavioral performance obtained by optogenetically silencing late V1 activity (>200 ms after stimulus onset), a result confirmed by a second multisensory task with different requirements. Thus, although early visual response components encode all sensory information necessary to solve the task, V1 is not simply relaying information to higher-order areas transforming it into behavioral responses. Rather, task complexity determines the temporal extension of a loop of recurrent activity, which overlaps with report-related activity and determines how perceptual decisions are built.


2020 ◽  
Author(s):  
Nicholas J. Benfey ◽  
Vanessa J. Li ◽  
Anne Schohl ◽  
Edward S. Ruthazer

AbstractVarious types of sensory stimuli have been shown to induce calcium elevations in glia. However, a mechanistic understanding of the signalling pathways mediating sensory-evoked activity in glia in intact animals is still emerging. Here we demonstrate that during early development of the Xenopus laevis visual system, radial astrocytes in the optic tectum are highly responsive to sensory stimulation. Calcium transients occur spontaneously in radial astrocytes at rest and are abolished by silencing neuronal activity with tetrodotoxin. Visual stimulation drives temporally correlated increases in the activity patterns of neighbouring radial astrocytes. Following blockade of all glutamate receptors, visually-evoked calcium activity in radial astrocytes is enhanced, rather than suppressed, while the additional blockade of either glutamate transporters or sodium-calcium exchangers (NCX) fully prevents visually-evoked responses. Additionally, we demonstrate that blockade of NCX alone is sufficient to prevent visually-evoked responses in radial astrocytes, highlighting a pivotal role for NCX in glia during development.


2010 ◽  
Vol 107 (5) ◽  
pp. 2265-2270 ◽  
Author(s):  
Zachary M. Weil ◽  
Qiuyu Zhang ◽  
Allison Hornung ◽  
David Blizard ◽  
Donald W. Pfaff

Although there is an extensive amount known about specific sensory and motor functions of the vertebrate brain, less is understood about the regulation of global brain states. We have recently proposed that a function termed generalized arousal (Ag) serves as the most elemental driving force in the nervous system, responsible for the initial activation of all behavioral responses. An animal with increased generalized CNS arousal is characterized by greater motor activity, increased responsivity to sensory stimuli, and greater emotional lability. Implicit in this theory was the prediction that increases in generalized arousal would augment specific motivated behaviors that depend on arousal. Here, we address the idea directly by testing two lines of mice bred for high or low levels of generalized arousal and assessing their responses in tests of specific forms of behavioral arousal, sex and anxiety/exploration. We report that animals selected for differential generalized arousal exhibit marked increases in sensory, motor, and emotional reactivity in our arousal assay. Furthermore, male mice selected for high levels of generalized arousal were excitable and showed more incomplete mounts before the first intromission (IN), but having achieved that IN, they exhibited far fewer IN before ejaculating, as well as ejaculating much sooner after the first IN, thus indicating a high level of sexual arousal. Additionally, high-arousal animals of both sexes exhibited greater levels of anxiety-like behaviors and reduced exploratory behavior in the elevated plus maze and light-dark box tasks. Taken together, these data illustrate the impact of Ag on motivated behaviors.


2004 ◽  
Vol 112 (4) ◽  
pp. 565-576 ◽  
Author(s):  
Th. J. M�ller ◽  
Th. Koenig ◽  
J. Wackermann ◽  
P. Kalus ◽  
A. Fallgatter ◽  
...  

2017 ◽  
Vol 24 (3) ◽  
pp. 277-293 ◽  
Author(s):  
Selen Atasoy ◽  
Gustavo Deco ◽  
Morten L. Kringelbach ◽  
Joel Pearson

A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at “rest.” Here, we introduce the concept of harmonic brain modes—fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.


1990 ◽  
Vol 63 (3) ◽  
pp. 502-522 ◽  
Author(s):  
R. Lal ◽  
M. J. Friedlander

1. Extracellular recordings were made from single neurons in layer A of the left dorsal lateral geniculate nucleus (LGNd) of anesthetized and paralyzed adult cats. Responses to retinotopically identical visual stimuli (presented through the right eye) were recorded at several positions of the left eye in its orbit. Visual stimuli consisted of drifting sinusoidal gratings of optimal temporal and spatial frequencies at twice threshold contrast. Visual stimulation of the left eye was blocked by a variety of methods, including intravitreal injection of tetrodotoxin (TTX). The change in position of the left eye was achieved by passive movements in a randomized and interleaved fashion. Of 237 neurons studied, responses were obtained from 143 neurons on 20-100 trials of identical visual stimulation at each of six eye positions. Neurons were classified as X- or Y- on the basis of a standard battery of physiological tests (primarily linearity of spatial summation and response latency to electrical stimulation of the optic chiasm). 2. The effect of eye position on the visual response of the 143 neurons was analyzed with respect to the number of action potentials elicited and the peak firing rate. Fifty-seven (40%) neurons had a significant effect [by one-factor repeated-measure analysis of variance (ANOVA), P less than 0.05] of eye position on the visual response by either criterion (number of action potentials or peak firing rate). Of these 57 neurons, 47 had a significant effect (P less than 0.05) with respect to the number of action potentials and 23 had a significant effect (P less than 0.05) by both criteria. Thus the permissive measure by either criterion and the conservative measure by both criteria resulted in 40% and 16%, respectively, of all neurons' visual responses being significantly affected by eye position. 3. For the 47 neurons with a significant effect of eye position (number of action potentials criterion), a trend analysis of eye position versus visual response showed a linear trend (P less than 0.05) for 9 neurons, a quadratic trend (P less than 0.05) for 32 neurons, and no significant trend for the 6 remaining neurons. The trends were approximated with linear and nonlinear gain fields (range of eye position change over which the visual response was modulated). The gain fields of individual neurons were compared by measuring the normalized gain (change in neuronal response per degree change of eye position). The mean normalized gain for the 47 neurons was 4.3. 4. The nonlinear gain fields were generally symmetric with respect to nasal versus temporal changes in eye position.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Author(s):  
Roman Dvorkin ◽  
Stephen D. Shea

ABSTRACTThe noradrenergic locus coeruleus (LC) mediates key aspects of arousal, memory, and cognition in structured tasks, but its contribution to natural behavior remains unclear. Neuronal activity in LC is organized into sustained (‘tonic’) firing patterns reflecting global brain states and rapidly fluctuating (‘phasic’) bursts signaling discrete behaviorally significant events. LC’s broad participation in social behavior including maternal behavior is well-established, yet the temporal relationship of its activity to sensory events and behavioral decisions in this context is unknown. Here, we made electrical and optical recordings from LC in female mice during maternal interaction with pups. We find that pup retrieval stably elicits precisely timed and pervasive phasic activation of LC that can’t be attributed to sensory stimuli, motor activity, or reward. Correlation of LC activity with retrieval events shows that phasic events are most closely related to subsequent behavior. We conclude that LC likely drives goal-directed action selection during social behavior with globally-broadcast noradrenaline release.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Blaise Robert ◽  
Eyal Y Kimchi ◽  
Yurika Watanabe ◽  
Tatenda Chakoma ◽  
Miao Jing ◽  
...  

Basal forebrain cholinergic neurons (BFCNs) project throughout the cortex to regulate arousal, stimulus salience, plasticity, and learning. Although often treated as a monolithic structure, the basal forebrain features distinct connectivity along its rostrocaudal axis that could impart regional differences in BFCN processing. Here, we performed simultaneous bulk calcium imaging from rostral and caudal BFCNs over a one-month period of variable reinforcement learning in mice. BFCNs in both regions showed equivalently weak responses to unconditioned visual stimuli and anticipated rewards. Rostral BFCNs in the horizontal limb of the diagonal band were more responsive to reward omission, more accurately classified behavioral outcomes, and more closely tracked fluctuations in pupil-indexed global brain state. Caudal tail BFCNs in globus pallidus and substantia innominata were more responsive to unconditioned auditory stimuli, orofacial movements, aversive reinforcement, and showed robust associative plasticity for punishment-predicting cues. These results identify a functional topography that diversifies cholinergic modulatory signals broadcast to downstream brain regions.


Sign in / Sign up

Export Citation Format

Share Document