Using the CIRA GC/IR Analyzer with an FT-IR Spectrometer as an Alternative to Interfacing a Conventional Gas Chromatograph

1979 ◽  
Vol 17 (8) ◽  
pp. 454-459 ◽  
Author(s):  
R. H. Shaps ◽  
M. J. Flanagan ◽  
A. Varano
Keyword(s):  
Ft Ir ◽  
1995 ◽  
Vol 26 ◽  
pp. S415
Author(s):  
P Keronen ◽  
J Räsänen ◽  
M Kulmala ◽  
P Hari ◽  
A Uusi-Rauva
Keyword(s):  
Ft Ir ◽  

2021 ◽  
Vol 37 (6) ◽  
pp. 638-647
Author(s):  
Eun Young Yun ◽  
Suyeon Kim

Organic residues are substances derived from diverse natural sources. Recent scientific analysis of organic residues has yielded important information in restoring the lifestyles of ancient peoples. In this study, the organic material contained within the celadon oil bottle of the Goryeo dynasty, excavated from the Soejoul site in Geumneung-dong, Chungju, was analyzed using Fourier-transform infrared spectroscopy (FT-IR) and gas chromatograph-mass spectrometer (GC-MS). The results showed that the organic materials in the bottle were plant-derived oils. In particular, polyunsaturated fatty acids and phytosterols were detected using GC-MS analysis. Sesamin components were also identified. Sesamin, which is a characteristic component of sesame seeds, is a lignan and an antioxidant. As the organic residues in the oil bottle were derived from sesame seeds, it is presumed that sesame oil was stored in the bottle.


2013 ◽  
Vol 821-822 ◽  
pp. 986-989
Author(s):  
Jin Ba ◽  
Li Qiang Jin ◽  
Wen Run Yao

Tara gum is a natural hydrocolloid obtained by a mechanical process from the endosperm of Tara tree seeds. In this study, chemical composition and structure of tara polysaccharide gum were characterized by fourier transform infrared spectroscopy (FT-IR) and gas chromatograph-mass spectrometer (GC-MS). Its rheological properties were also discussed. The results showed that tara gum had typical characteristics of plant polysaccharides, which was mainly consisted of galactose and mannose (mass ratio of galactose/mannose was 4.2:1), as well as a small amount of arabinose, glucose and xylose. The viscosity of tara gum solution was increased with the increase of its concentration. The tara gum solution demonstrated a higher viscocity at the shear rate lower than 80 Hz, but a higher elasticity at the shear rate higher than 80 Hz.


2011 ◽  
Author(s):  
Andreas Kenda ◽  
Stephan Lüttjohann ◽  
Thilo Sandner ◽  
Martin Kraft ◽  
Andreas Tortschanoff ◽  
...  
Keyword(s):  
Ft Ir ◽  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Su-Jin Ryu ◽  
Hyun-Sook Bae

AbstractChemical based finishing agents often affect human body and environment. Therefore, in this study, eco-friendly microcapsules were manufactured to minimize the use of chemicals by using chitosan, a natural substance, as a wall material and basil oil as a core material. First, the optimum manufacturing conditions were established through the shape and size of the synthesized microcapsules. Second, the synthesis and thermal stability of the prepared microcapsules were evaluated. Finally, the applicability to functional fiber processing was reviewed by measuring the release characteristics of the microcapsules. Consequently, using 2 wt% chitosan, Triton X-100 as a emulsifier and stirring at 6000 rpm were considered to be efficient in terms of capsule formation. FT-IR spectrum and Gas Chromatograph showed that microcapsules were stably synthesized. And microcapsule containing basil oil was given heat resistance by encapsulation. Lastly, microcapsules can be confirmed to have sustained-release, due to basil oil in microcapsules has a small amount of release up to 10 h, and is continuously released until after 60 h to release slowly, As a result, the manufactured microcapsules finishing agent may be applied to finishing of textile product.


Author(s):  
Steven M. Le Vine ◽  
David L. Wetzel

In situ FT-IR microspectroscopy has allowed spatially resolved interrogation of different parts of brain tissue. In previous work the spectrrscopic features of normal barin tissue were characterized. The white matter, gray matter and basal ganglia were mapped from appropriate peak area measurements from spectra obtained in a grid pattern. Bands prevalent in white matter were mostly associated with the lipid. These included 2927 and 1469 cm-1 due to CH2 as well as carbonyl at 1740 cm-1. Also 1235 and 1085 cm-1 due to phospholipid and galactocerebroside, respectively (Figs 1and2). Localized chemical changes in the white matter as a result of white matter diseases have been studied. This involved the documentation of localized chemical evidence of demyelination in shiverer mice in which the spectra of white matter lacked the marked contrast between it and gray matter exhibited in the white matter of normal mice (Fig. 3).The twitcher mouse, a model of Krabbe’s desease, was also studied. The purpose in this case was to look for a localized build-up of psychosine in the white matter caused by deficiencies in the enzyme responsible for its breakdown under normal conditions.


Author(s):  
David L. Wetzel ◽  
John A. Reffner ◽  
Gwyn P. Williams

Synchrotron radiation is 100 to 1000 times brighter than a thermal source such as a globar. It is not accompanied with thermal noise and it is highly directional and nondivergent. For these reasons, it is well suited for ultra-spatially resolved FT-IR microspectroscopy. In efforts to attain good spatial resolution in FT-IR microspectroscopy with a thermal source, a considerable fraction of the infrared beam focused onto the specimen is lost when projected remote apertures are used to achieve a small spot size. This is the case because of divergence in the beam from that source. Also the brightness is limited and it is necessary to compromise on the signal-to-noise or to expect a long acquisition time from coadding many scans. A synchrotron powered FT-IR Microspectrometer does not suffer from this effect. Since most of the unaperatured beam’s energy makes it through even a 12 × 12 μm aperture, that is a starting place for aperture dimension reduction.


Author(s):  
John A. Reffner ◽  
William T. Wihlborg

The IRμs™ is the first fully integrated system for Fourier transform infrared (FT-IR) microscopy. FT-IR microscopy combines light microscopy for morphological examination with infrared spectroscopy for chemical identification of microscopic samples or domains. Because the IRμs system is a new tool for molecular microanalysis, its optical, mechanical and system design are described to illustrate the state of development of molecular microanalysis. Applications of infrared microspectroscopy are reviewed by Messerschmidt and Harthcock.Infrared spectral analysis of microscopic samples is not a new idea, it dates back to 1949, with the first commercial instrument being offered by Perkin-Elmer Co. Inc. in 1953. These early efforts showed promise but failed the test of practically. It was not until the advances in computer science were applied did infrared microspectroscopy emerge as a useful technique. Microscopes designed as accessories for Fourier transform infrared spectrometers have been commercially available since 1983. These accessory microscopes provide the best means for analytical spectroscopists to analyze microscopic samples, while not interfering with the FT-IR spectrometer’s normal functions.


Author(s):  
Liling Cho ◽  
David L. Wetzel

Polarized infrared microscopy has been used for forensic purposes to differentiate among polymer fibers. Dichroism can be used to compare and discriminate between different polyester fibers, including those composed of polyethylene terephthalate that are frequently encountered during criminal casework. In the fiber manufacturering process, fibers are drawn to develop molecular orientation and crystallinity. Macromolecular chains are oriented with respect to the long axis of the fiber. It is desirable to determine the relationship between the molecular orientation and stretching properties. This is particularly useful on a single fiber basis. Polarized spectroscopic differences observed from a single fiber are proposed to reveal the extent of molecular orientation within that single fiber. In the work presented, we compared the dichroic ratio between unstretched and stretched polyester fibers, and the transition point between the two forms of the same fiber. These techniques were applied to different polyester fibers. A fiber stretching device was fabricated for use on the instrument (IRμs, Spectra-Tech) stage. Tension was applied with a micrometer screw until a “neck” was produced in the stretched fiber. Spectra were obtained from an area of 24×48 μm. A wire-grid polarizer was used between the source and the sample.


Sign in / Sign up

Export Citation Format

Share Document