functional fiber
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 4)

Author(s):  
Sushmita Challa ◽  
M. Shafquatul Islam ◽  
Danming Wei ◽  
Jasmin Beharic ◽  
Dan O. Popa ◽  
...  

Abstract Fabrics and fibrous materials offer a soft, porous, and flexible substrate for microelectromechanical systems (MEMS) packaging in breathable, wearable formats that allow airflow. Device-on-fiber systems require developments in the field of E-Textiles including smart fibers, functional fiber intersections, textile circuit routing, and alignment methods that adapt to irregular materials. In this paper, we demonstrate a MEMS-on-fabric layout workflow that obtains fiber intersection locations from high-resolution fabric images. We implement an image processing algorithm to drive the MEMS layout software, creating an individualized MEMS “gripper” layout designed to grasp fibers on a specific fabric substrate during a wafer-to-fabric parallel transfer step. The efficiency of the algorithm in terms of a number of intersections identified on the complete image is analyzed. The specifications of the MEMS layout design such as the length of the MEMS gripper, spatial distribution, and orientation are derivable from the MATLAB routine implemented on the image. Furthermore, the alignment procedure, tolerance, and hardware setup for the alignment method of the framed sample fabric to the wafer processed using the custom gripper layout are discussed along with the challenges of the release of MEMS devices from the Si substrate to the fabric substrate.


2021 ◽  
Vol 22 (12) ◽  
pp. 6525
Author(s):  
Chuanhui Xu ◽  
Jianhua Liu ◽  
Jianwei Gao ◽  
Xiaoyu Wu ◽  
Chenbin Cui ◽  
...  

The gastrointestinal tract is a heterogeneous ecosystem with distinct, stratified environments, which leads to different microbial composition in different intestinal segments. The regional heterogeneity of intestinal microbiota complicates the relationship between diet and microbiota. Few studies have focused on the effects of different diets on microbiota in different intestinal segments. This study aimed to investigate the effects of functional fiber on the microbial composition in multiple intestinal segments from a high-fat diet compared with a normal chow diet. We found that the response of microbiota from different intestinal segments to diet was related to the intestinal physiologic function and the physicochemical properties of dietary nutrients. A high-fat diet drove changes in the microbial composition in the hindgut, possibly by affecting the digestive environment of the foregut, and increased the regional heterogeneity of the whole intestinal microbiota. The supplementation of functional fiber promoted the microbial transfer and colonization from the anterior to the posterior intestinal segments, and increased the regional similarity of intestinal microbiota accordingly, particularly within the hindgut. The gut fermentation of the functional fiber, which mainly occurred in the hindgut, resulted in a significant change in the microbial composition and metabolism in the cecum and colon, with richer carbohydrate metabolism-related bacteria, including Mucispirillum, Prevotella, Anaerostipes, Oscillospira, Ruminococcus, Bacteroides, Coprococcus, Ruminococcus (Lachnospiraceae), and Allobaculum, and higher production of acetate and butyrate. We concluded that multiple regulatory mechanisms of diets which affect microbiota composition exist, including microbial metabolism, microbial migration, and the regulation of the intestinal environment.


2021 ◽  
Author(s):  
Anthony Tabet ◽  
Marc-Joseph Antonini ◽  
Atharva Sahasrabudhe ◽  
Jimin Park ◽  
Dekel Rosenfeld ◽  
...  

<p>Thermal drawing has been recently leveraged to yield multi-functional, fiber-based neural probes at near kilometer length scales. Despite its promise, the widespread adoption of this approach has been impeded by (1) material compatibility requirements and (2) labor-intensive interfacing of functional features to external hardware. Furthermore, in multifunctional fibers, significant volume is occupied by passive polymer cladding that so far has only served structural or electrical insulation purposes. In this letter, we report a rapid, robust, and modular approach to creating multi-functional fiber-based neural interfaces using a solvent evaporation or entrapment driven (SEED) integration process. This process brings together electrical, optical, and microfluidic modalities all encased within a co-polymer comprised of water-soluble poly(ethylene glycol) tethered to water-insoluble poly(urethane) (PU-PEG). We employ these devices for simultaneous optogenetics and electrophysiology, and demonstrate that multi-functional neural probes can be used to deliver cellular cargo with high viability. Upon exposure to water, PU-PEG cladding spontaneously forms a hydrogel, which in addition to enabling integration of modalities, can harbor small molecules and nanomaterials that can be released into local tissue following implantation. We also synthesized a custom nanodroplet forming block polymer and demonstrated that embedding such materials within the hydrogel cladding of our probes enables delivery of hydrophobic small molecules in vitro and in vivo. Our approach widens the chemical toolbox and expands the capabilities of multi-functional neural interfaces.</p>


2021 ◽  
Author(s):  
Anthony Tabet ◽  
Marc-Joseph Antonini ◽  
Atharva Sahasrabudhe ◽  
Jimin Park ◽  
Dekel Rosenfeld ◽  
...  

<p>Thermal drawing has been recently leveraged to yield multi-functional, fiber-based neural probes at near kilometer length scales. Despite its promise, the widespread adoption of this approach has been impeded by (1) material compatibility requirements and (2) labor-intensive interfacing of functional features to external hardware. Furthermore, in multifunctional fibers, significant volume is occupied by passive polymer cladding that so far has only served structural or electrical insulation purposes. In this letter, we report a rapid, robust, and modular approach to creating multi-functional fiber-based neural interfaces using a solvent evaporation or entrapment driven (SEED) integration process. This process brings together electrical, optical, and microfluidic modalities all encased within a co-polymer comprised of water-soluble poly(ethylene glycol) tethered to water-insoluble poly(urethane) (PU-PEG). We employ these devices for simultaneous optogenetics and electrophysiology, and demonstrate that multi-functional neural probes can be used to deliver cellular cargo with high viability. Upon exposure to water, PU-PEG cladding spontaneously forms a hydrogel, which in addition to enabling integration of modalities, can harbor small molecules and nanomaterials that can be released into local tissue following implantation. We also synthesized a custom nanodroplet forming block polymer and demonstrated that embedding such materials within the hydrogel cladding of our probes enables delivery of hydrophobic small molecules in vitro and in vivo. Our approach widens the chemical toolbox and expands the capabilities of multi-functional neural interfaces.</p>


SusMat ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 105-126
Author(s):  
Xiaopei Zhang ◽  
Huijuan Lin ◽  
Huan Shang ◽  
Jingsan Xu ◽  
Jixin Zhu ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Su-Jin Ryu ◽  
Hyun-Sook Bae

AbstractChemical based finishing agents often affect human body and environment. Therefore, in this study, eco-friendly microcapsules were manufactured to minimize the use of chemicals by using chitosan, a natural substance, as a wall material and basil oil as a core material. First, the optimum manufacturing conditions were established through the shape and size of the synthesized microcapsules. Second, the synthesis and thermal stability of the prepared microcapsules were evaluated. Finally, the applicability to functional fiber processing was reviewed by measuring the release characteristics of the microcapsules. Consequently, using 2 wt% chitosan, Triton X-100 as a emulsifier and stirring at 6000 rpm were considered to be efficient in terms of capsule formation. FT-IR spectrum and Gas Chromatograph showed that microcapsules were stably synthesized. And microcapsule containing basil oil was given heat resistance by encapsulation. Lastly, microcapsules can be confirmed to have sustained-release, due to basil oil in microcapsules has a small amount of release up to 10 h, and is continuously released until after 60 h to release slowly, As a result, the manufactured microcapsules finishing agent may be applied to finishing of textile product.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 226
Author(s):  
Kun Zhao ◽  
Shi-Xiong Kang ◽  
Yao-Yao Yang ◽  
Deng-Guang Yu

As a new kind of water pollutant, antibiotics have encouraged researchers to develop new treatment technologies. Electrospun fiber membrane shows excellent benefits in antibiotic removal in water due to its advantages of large specific surface area, high porosity, good connectivity, easy surface modification and new functions. This review introduces the four aspects of electrospinning technology, namely, initial development history, working principle, influencing factors and process types. The preparation technologies of electrospun functional fiber membranes are then summarized. Finally, recent studies about antibiotic removal by electrospun functional fiber membrane are reviewed from three aspects, namely, adsorption, photocatalysis and biodegradation. Future research demand is also recommended.


2021 ◽  
Vol 39 (1) ◽  
pp. 290-294
Author(s):  
Tingting Yuan ◽  
Xiaotong Zhang ◽  
Qi Xia ◽  
Yiping Wang ◽  
Libo Yuan

Sign in / Sign up

Export Citation Format

Share Document