HSCCC Separation of Three Main Compounds from the Crude Extract of Dracocephalum Tanguticum by Using Dimethyl Sulfoxide as Cosolvent

Author(s):  
Xue Yang ◽  
Yongling Liu ◽  
Tao Chen ◽  
Nana Wang ◽  
Hongmei Li ◽  
...  

Abstract Separation of natural compounds directly from the crude extract is a challenging work for traditional column chromatography. In the present study, an efficient method for separation of three main compounds from the crude extract of Dracocephalum tanguticum has been successfully established by high-speed counter-current chromatography (HSCCC). The crude extract was directly introduced into HSCCC by using dimethyl sulfoxide as cosolvent. Ethyl acetate/n-butyl alcohol/0.3% glacial acetic acid (4: 1: 5, v/v) system was used and three target compounds with purity higher than 80% were obtained. Preparative HPLC was used for further purification and three target compounds with purity higher than 98% were obtained. The compounds were identified as chlorogenic acid, pedaliin and pedaliin-6″-acetate.

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3135 ◽  
Author(s):  
Yingjie He ◽  
Shihao Zhu ◽  
Changqiao Wu ◽  
Ying Lu ◽  
Qi Tang

The typical compounds of Aurantii fructus (AF) reported in previous research were screened for their high antagonistic ability on the D2 dopamine receptor (D2R) in silico, and then bioactivity-guided separation was undertaken on the potential D2R antagonists from AF using high-speed counter-current chromatography (HSCCC). Three flavanones, two polymethoxyflavonoids, and three coumarins were effectively isolated from ethanol extracts of Aurantii fructus (AF) by the use of a two-step HSCCC method, and their chemical structures were identified by mass spectrometry, 1H-NMR, and 13C-NMR and compared with published data. Firstly, crude extract of 70% ethanol eluent (150 mg) was isolated by HSCCC using an n-hexane−ethyl acetate−n-butanol−methanol−0.05% acetic acid (1:3:1.8:1:5, v/v/v/v/v) solvent system, and compounds 1 (naringin, 28 mg), 2 (neohesperidin, 13 mg), 3 (meranzin, 5 mg) and 4 (poncirin, 3 mg) were successfully isolated with 98.5%, 95.1%, 97.7%, and 92.4% purity, respectively. Then, the crude extract of 95% ethanol eluent (120 mg) was isolated by n-hexane−n-butanol−ethanol (methanol)−0.05% acetic acid (2:0.6:1:3, v/v/v/v) solvent system and compounds 3 (meranzin, 3 mg), 5 (meranzin hydrate, 4 mg), 6 (isomeranzin, 6 mg), 7 (nobiletin, 10 mg), and 8 (tangeretin, 7 mg) were successfully isolated with 95.8%, 98.5%, 95.1%, 92.4%, and 97.7% purity, respectively. Naringenin, a parent structure of naringin with the excellent binding score of −9.3 kcal/mol, was completely in conjunction with the active site of D2R, indicating that it is critical for the treatment of gastrointestinal dysfunction. The results indicated that the bioactivity-guided method is practical for the effective separation of active compounds from natural resources.


2021 ◽  
Vol 7 (12) ◽  
pp. 25-33
Author(s):  
A. Chiriapkin ◽  
I. Kodonidi ◽  
A. Ivchenko ◽  
L. Smirnova

The article presents a modified method for the synthesis of 2-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine-4(3H)-one and the predict of their anti-inflammatory activity. The proposed method for obtaining tetrahydrothienopyrimidine derivatives is preparatively effective and simple. Their synthesis was carried out by heterocyclization of azomethine derivatives of 2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide in the medium of glacial acetic acid with the catalytic addition of dimethyl sulfoxide. Preliminary prognosis of anti-inflammatory activity in silico method allowed us to identify the most promising compounds. Of these, the 4b structure containing a 2-hydroxyphenyl fragment in the second position of pyrimidine-4(3H)-one may be of the greatest interest. It seems appropriate to further study the spectrum of biological activity of the studied compounds.


2016 ◽  
Vol 11 (8) ◽  
pp. 1934578X1601100
Author(s):  
Ewelina Kozioł ◽  
Ilkay Erdogan Orhan ◽  
F. Sezer Senol ◽  
Kalina Alipieva ◽  
Milen Georgiev ◽  
...  

The dichloromethane (DCM) extract of the fruits of Peucedanum schottii Besser ex DC. (Apiaceae) was subjected to high-performance counter-current chromatography (HPCCC) for the efficient and fast separation (30 min) and isolation of cimifugin using an ethyl acetate: water (1:1 v/v, K = 1.01) system. The analytical scale-optimized separation was easily scaled to semi-preparative conditions. Cimifugin (11.25% yield, 96.5% purity) was isolated for the first time from P. schottii and characterized by NMR spectroscopy. Cimifugin and the crude DCM extract were evaluated using ELISA microtiter assays for their inhibitory potential against the cholinesterases (acetylcholinesterase - AChE and butyrylcholinesterase - BChE), and tyrosinase (TYR), which are key enzymes for the treatment of some neurodegenerative diseases, i.e. Alzheimer's and Parkinson's. The crude extract exhibited a weak inhibitory activity against AChE, BChE, and TYR (4.2, 35.5, and 0% at 100 μg mL−1 and 10.3, 40.0, and 12.2% at 200 μg mL−1, respectively), while cimifugin displayed low to moderate inhibition towards AChE and BChE (3.1 and 21.6%, respectively) at 200 μg mL−1.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 620 ◽  
Author(s):  
Xiaowei Sun ◽  
Huijiao Yan ◽  
Yujie Zhang ◽  
Xiao Wang ◽  
Dawei Qin ◽  
...  

Seven diterpene lactones, andrographolide (1), isoandrographolide (2), neo-andrographolide (3), 14-deoxy-11,12-didehydroandrographolide (4), 14-deoxyandrographiside (5), 14-deoxy-11,12-didehydroandrographiside (6), 3,14-dideoxyandrographolide (10), and three flavones, andrographidine C (7), andrographidine A (8), 5-hydroxy-7,8-dimethoxyflavanone (9) have been successfully and efficiently isolated from A. paniculata using an off-line two dimensional (2D) high-speed counter-current chromatography (HSCCC) method for the first time. For the first dimension HSCCC separation, petroleum ether-ethyl acetate-methanol-water 3:7:5:5 (v/v) was employed to isolate 14.4 mg of compound 1, 3.1 mg of compound 2, 7.8 mg of compound 3, and 18.0 mg of compound 4 from 200 mg of the A. paniculata extract. For the second dimension HSCCC separation, petroleum ether-ethyl acetate-methanol-water 2:8:1:9 (v/v) and 5:5:6:4 (v/v) were employed to isolate the collected fractions ranged from 55 to 79 min and the flow out fraction, respectively, which led to 5.1 mg of compound 5, 4.4 mg of compound 6, 2.4 mg of compound 7, 3.3 mg of compound 8, 4.0 mg of compound 9, 7.0 mg of compound 10. The structures of these diterpene lactones and flavones were elucidated by extensive spectroscopic methods.


2002 ◽  
Vol 57 (11-12) ◽  
pp. 1051-1055 ◽  
Author(s):  
Gilda G. Leitão ◽  
Suzana G. Leitão ◽  
Wagner Vilegas

The natural naphthopyranones paepalantine (1), paepalantine-9O-β-ᴅ-glucopyranoside (2) and paepalantine-9-O-β-ᴅ-allopyranosyl-(1→6)-O-β-ᴅ-glucopyranoside (3) were separated in a preparative scale from the ethanolic extract of the capitula of Paepalanthus bromelioides by high-speed counter-current chromatography (HSCCC). The solvent system used was composed of water-ethanol-ethyl acetate-hexane (10:4 : 10:4, v/v/v/v). This technique led to the separation of the three different naphthopyranone glycosides in pure form in approximately 7 hours. Paepalantine showed a good antioxidant activity when assayed by the DPPH radical spectrophotometric assay.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2773
Author(s):  
Guanglei Zuo ◽  
Kang-Hoon Je ◽  
Yanymee N. Guillen Quispe ◽  
Kyong-Oh Shin ◽  
Hyun Yong Kim ◽  
...  

We previously reported that Lepechinia meyenii (Walp.) Epling has antioxidant and aldose reductase (AR) inhibitory activities. In this study, L. meyenii was extracted in a 50% MeOH and CH2Cl2/MeOH system. The active extracts of MeOH and 50% MeOH were subjected to fractionation, followed by separation using high-speed counter-current chromatography (HSCCC) and preparative HPLC. Separation and identification revealed the presence of caffeic acid, hesperidin, rosmarinic acid, diosmin, methyl rosmarinate, diosmetin, and butyl rosmarinate. Of these, rosmarinic acid, methyl rosmarinate, and butyl rosmarinate possessed remarkable antioxidant and AR inhibitory activities. The other compounds were less active. In particular, rosmarinic acid is the key contributor to the antioxidant and AR inhibitory activities of L. meyenii; it is rich in the MeOH extract (333.84 mg/g) and 50% MeOH extract (135.41 mg/g) of L. meyenii and is especially abundant in the EtOAc and n-BuOH fractions (373.71–804.07 mg/g) of the MeOH and 50% MeOH extracts. The results clarified the basis of antioxidant and AR inhibitory activity of L. meyenii, adding scientific evidence supporting its traditional use as an anti-diabetic herbal medicine. The HSCCC separation method established in this study can be used for the preparative separation of rosmarinic acid from natural products.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2025 ◽  
Author(s):  
Shi-Wei Sun ◽  
Rong-Rong Wang ◽  
Xiao-Ying Sun ◽  
Jia-He Fan ◽  
Hang Qi ◽  
...  

Bioassay-guided fractionation of the ethanol extract of whole herbs of Achillea alpina led to the isolation of isochlorogenic acids A and B as transient receptor potential vanilloid 3 (TRPV3) channel antagonists by using a calcium fluorescent assay. The structures were identified by spectroscopic analysis and the inhibitory activities of isochlorogenic acids A and B were confirmed by whole-cell patch clamp recordings of human embryonic kidney 293 (HEK293) cells expressing human TRPV3. Molecular docking results revealed that these two compounds reside in the same active pocket of human TRPV3 channel protein with lower binding energy than the agonist 2-aminoethoxydiphenyl borate (2-APB). High-speed counter-current chromatography (HSCCC) coupled with a liquid-liquid extraction approach was successfully established for the separation of isochlorogenic acids A and B from the whole herbs of A. alpina. Ethyl acetate and n-hexane-ethyl acetate-water (3:3:4 and 1:5:4, v/v/v) were selected as liquid-liquid extraction solvent systems to remove high- and low-polarity impurities in the mixture. Sixty g of ethanol extract was refined by solvent partition to yield 1.7 g of the enriched fraction, of which 480 mg in turn obtained 52.5 mg of isochlorogenic acid B (purity 98.3%) and 37.6 mg isochlorogenic acid A (purity 96.2%) after HSCCC with n-hexane-ethyl acetate-water containing 1% acetic acid (1:4:8, v/v/v).


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4328
Author(s):  
Rodrigo Morales-Vera ◽  
Jordan Crawford ◽  
Chang Dou ◽  
Renata Bura ◽  
Rick Gustafson

Most of the current commercial production of glacial acetic acid (GAA) is by petrochemical routes, primarily methanol carbonylation. GAA is an intermediate in the production of plastics, textiles, dyes, and paints. GAA production from biomass might be an economically viable and sustainable alternative to petroleum-derived routes. Separation of acetic acid from water is a major expense and requires considerable energy. This study evaluates and compares the technical and economic feasibility of GAA production via bioconversion using either ethyl acetate or alamine in diisobutylkerosene (DIBK) as organic solvents for purification. Models of a GAA biorefinery with a production of 120,650 tons/year were simulated in Aspen software. This biorefinery follows the path of pretreatment, enzymatic hydrolysis, acetogen fermentation, and acid purification. Estimated capital costs for different scenarios ranged from USD 186 to 245 million. Recovery of GGA using alamine/DIBK was a more economical process and consumed 64% less energy, due to lower steam demand in the recovery distillation columns. The estimated average minimum selling prices of GGA were USD 756 and 877/ton for alamine/DIBK and ethyl acetate scenarios, respectively. This work establishes a feasible and sustainable approach to produce GGA from poplar biomass via fermentation.


Sign in / Sign up

Export Citation Format

Share Document