scholarly journals Surgical Mask Partition Reduces the Risk of Noncontact Transmission in a Golden Syrian Hamster Model for Coronavirus Disease 2019 (COVID-19)

2020 ◽  
Vol 71 (16) ◽  
pp. 2139-2149 ◽  
Author(s):  
Jasper Fuk-Woo Chan ◽  
Shuofeng Yuan ◽  
Anna Jinxia Zhang ◽  
Vincent Kwok-Man Poon ◽  
Chris Chung-Sing Chan ◽  
...  

Abstract Background Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is believed to be mostly transmitted by medium- to large-sized respiratory droplets, although airborne transmission may be possible in healthcare settings involving aerosol-generating procedures. Exposure to respiratory droplets can theoretically be reduced by surgical mask usage. However, there is a lack of experimental evidence supporting surgical mask usage for prevention of COVID-19. Methods We used a well-established golden Syrian hamster SARS-CoV-2 model. We placed SARS-CoV-2-challenged index hamsters and naive hamsters into closed system units each comprising 2 different cages separated by a polyvinyl chloride air porous partition with unidirectional airflow within the isolator. The effect of a surgical mask partition placed between the cages was investigated. Besides clinical scoring, hamster specimens were tested for viral load, histopathology, and viral nucleocapsid antigen expression. Results Noncontact transmission was found in 66.7% (10/15) of exposed naive hamsters. Surgical mask partition for challenged index or naive hamsters significantly reduced transmission to 25% (6/24, P = .018). Surgical mask partition for challenged index hamsters significantly reduced transmission to only 16.7% (2/12, P = .019) of exposed naive hamsters. Unlike the severe manifestations of challenged hamsters, infected naive hamsters had lower clinical scores, milder histopathological changes, and lower viral nucleocapsid antigen expression in respiratory tract tissues. Conclusions SARS-CoV-2 could be transmitted by respiratory droplets or airborne droplet nuclei which could be reduced by surgical mask partition in the hamster model. This is the first in vivo experimental evidence to support the possible benefit of surgical mask in prevention of COVID-19 transmission, especially when masks were worn by infected individuals.

2022 ◽  
Author(s):  
Shuofeng Yuan ◽  
Zi-Wei Ye ◽  
Ronghui Liang ◽  
Kaiming Tang ◽  
Anna Jinxia Zhang ◽  
...  

The newly emerging SARS-CoV-2 Omicron (B.1.1.529) variant first identified in South Africa in November 2021 is characterized by an unusual number of amino acid mutations in its spike that renders existing vaccines and therapeutic monoclonal antibodies dramatically less effective. The in vivo pathogenicity, transmissibility, and fitness of this new Variant of Concerns are unknown. We investigated these virological attributes of the Omicron variant in comparison with those of the currently dominant Delta (B.1.617.2) variant in the golden Syrian hamster COVID-19 model. Omicron-infected hamsters developed significantly less body weight losses, clinical scores, respiratory tract viral burdens, cytokine/chemokine dysregulation, and tissue damages than Delta-infected hamsters. The Omicron and Delta variant were both highly transmissible (100% vs 100%) via contact transmission. Importantly, the Omicron variant consistently demonstrated about 10-20% higher transmissibility than the already-highly transmissible Delta variant in repeated non-contact transmission studies (overall: 30/36 vs 24/36, 83.3% vs 66.7%). The Delta variant displayed higher fitness advantage than the Omicron variant without selection pressure in both in vitro and in vivo competition models. However, this scenario drastically changed once immune selection pressure with neutralizing antibodies active against the Delta variant but poorly active against the Omicron variant were introduced, with the Omicron variant significantly outcompeting the Delta variant. Taken together, our findings demonstrated that while the Omicron variant is less pathogenic than the Delta variant, it is highly transmissible and can outcompete the Delta variant under immune selection pressure. Next-generation vaccines and antivirals effective against this new VOC are urgently needed.


2001 ◽  
Vol 120 (5) ◽  
pp. A613-A613
Author(s):  
T IKEGAMI ◽  
P LATHAM ◽  
K KOBAYASHI ◽  
K ARIMORI ◽  
B BOUSCAREL

2021 ◽  
Vol 12 ◽  
Author(s):  
Kathrin Becker ◽  
Georg Beythien ◽  
Nicole de Buhr ◽  
Stephanie Stanelle-Bertram ◽  
Berfin Tuku ◽  
...  

Neutrophil extracellular traps (NETs) have been identified as one pathogenetic trigger in severe COVID-19 cases and therefore well-described animal models to understand the influence of NETs in COVID-19 pathogenesis are needed. SARS-CoV-2 infection causes infection and interstitial pneumonia of varying severity in humans and COVID-19 models. Pulmonary as well as peripheral vascular lesions represent a severe, sometimes fatal, disease complication of unknown pathogenesis in COVID-19 patients. Furthermore, neutrophil extracellular traps (NETs), which are known to contribute to vessel inflammation or endothelial damage, have also been shown as potential driver of COVID-19 in humans. Though most studies in animal models describe the pulmonary lesions characterized by interstitial inflammation, type II pneumocyte hyperplasia, edema, fibrin formation and infiltration of macrophages and neutrophils, detailed pathological description of vascular lesions or NETs in COVID-19 animal models are lacking so far. Here we report different types of pulmonary vascular lesions in the golden Syrian hamster model of COVID-19. Vascular lesions included endothelialitis and vasculitis at 3 and 6 days post infection (dpi), and were almost nearly resolved at 14 dpi. Importantly, virus antigen was present in pulmonary lesions, but lacking in vascular alterations. In good correlation to these data, NETs were detected in the lungs of infected animals at 3 and 6 dpi. Hence, the Syrian hamster seems to represent a useful model to further investigate the role of vascular lesions and NETs in COVID-19 pathogenesis.


2019 ◽  
Vol 43 (4) ◽  
pp. 380-388 ◽  
Author(s):  
William S M Wold ◽  
Ann E Tollefson ◽  
Baoling Ying ◽  
Jacqueline F Spencer ◽  
Karoly Toth

ABSTRACTThe symptoms of human adenovirus infections are generally mild and self-limiting. However, these infections have been gaining importance in recent years because of a growing number of immunocompromised patients. Solid organ and hematopoietic stem cell transplant patients are subjected to severe immunosuppressive regimes and cannot efficaciously eliminate virus infections. In these patients, adenovirus infections can develop into deadly multi-organ disseminated disease. Presently, in the absence of approved therapies, physicians rely on drugs developed for other purposes to treat adenovirus infections. As there is a need for anti-adenoviral therapies, researchers have been developing new agents and repurposing existing ones to treat adenovirus infections. There are several small molecule drugs that are being tested for their efficacy against human adenoviruses; some of these have reached clinical trials, while others are still in the preclinical phase. Besides these compounds, research on immunotherapy against adenoviral infection has made significant progress, promising another modality for treatment. The availability of an animal model confirmed the activity of some drugs already in clinical use while proving that others are inactive. This led to the identification of several lead compounds that await further development. In the present article, we review the current status of anti-adenoviral therapies and their advancement by in vivo studies in the Syrian hamster model.


2014 ◽  
Vol 82 (10) ◽  
pp. 4222-4232 ◽  
Author(s):  
Dennis Bakker ◽  
Anthony M. Buckley ◽  
Anne de Jong ◽  
Vincent J. C. van Winden ◽  
Joost P. A. Verhoeks ◽  
...  

ABSTRACTIn the past decade,Clostridium difficilehas emerged as an important gut pathogen. Symptoms ofC. difficileinfection range from mild diarrhea to pseudomembranous colitis. Besides the two main virulence factors toxin A and toxin B, other virulence factors are likely to play a role in the pathogenesis of the disease. In other Gram-positive and Gram-negative pathogenic bacteria, conserved high-temperature requirement A (HtrA)-like proteases have been shown to have a role in protein homeostasis and quality control. This affects the functionality of virulence factors and the resistance of bacteria to (host-induced) environmental stresses. We found that theC. difficile630 genome encodes a single HtrA-like protease (CD3284; HtrA) and have analyzed its rolein vivoandin vitrothrough the creation of an isogenic ClosTron-basedhtrAmutant ofC. difficilestrain 630Δerm(wild type). In contrast to the attenuated phenotype seen withhtrAdeletion in other pathogens, this mutant showed enhanced virulence in the Golden Syrian hamster model of acuteC. difficileinfection. Microarray data analysis showed a pleiotropic effect ofhtrAon the transcriptome ofC. difficile, including upregulation of the toxin A gene. In addition,the htrAmutant showed reduced spore formation and adherence to colonic cells. Together, our data show thathtrAcan modulate virulence inC. difficile.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryutaro Furukawa ◽  
Masahiro Kitabatake ◽  
Noriko Ouji-Sageshima ◽  
Yuki Suzuki ◽  
Akiyo Nakano ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread across the world. Inactivating the virus in saliva and the oral cavity represents a reasonable approach to prevent human-to-human transmission because the virus is easily transmitted through oral routes by dispersed saliva. Persimmon-derived tannin is a condensed type of tannin that has strong antioxidant and antimicrobial activity. In this study, we investigated the antiviral effects of persimmon-derived tannin against SARS-CoV-2 in both in vitro and in vivo models. We found that persimmon-derived tannin suppressed SARS-CoV-2 titers measured by plaque assay in vitro in a dose- and time-dependent manner. We then created a Syrian hamster model by inoculating SARS-CoV-2 into hamsters’ mouths. Oral administration of persimmon-derived tannin dissolved in carboxymethyl cellulose before virus inoculation dramatically reduced the severity of pneumonia with lower virus titers compared with a control group inoculated with carboxymethyl cellulose alone. In addition, pre-administration of tannin to uninfected hamsters reduced hamster-to-hamster transmission of SARS-CoV-2 from a cohoused, infected donor cage mate. These data suggest that oral administration of persimmon-derived tannin may help reduce the severity of SARS-CoV-2 infection and transmission of the virus.


Author(s):  
Jasper Fuk-Woo Chan ◽  
Anna Jinxia Zhang ◽  
Shuofeng Yuan ◽  
Vincent Kwok-Man Poon ◽  
Chris Chung-Sing Chan ◽  
...  

Abstract Background A physiological small-animal model that resembles COVID-19 with low mortality is lacking. Methods Molecular docking on the binding between angiotensin-converting enzyme 2 (ACE2) of common laboratory mammals and the receptor-binding domain of the surface spike protein of SARS-CoV-2 suggested that the golden Syrian hamster is an option. Virus challenge, contact transmission, and passive immunoprophylaxis studies were performed. Serial organ tissues and blood were harvested for histopathology, viral load and titer, chemokine/cytokine level, and neutralizing antibody titer. Results The Syrian hamster could be consistently infected by SARS-CoV-2. Maximal clinical signs of rapid breathing, weight loss, histopathological changes from the initial exudative phase of diffuse alveolar damage with extensive apoptosis to the later proliferative phase of tissue repair, airway and intestinal involvement with viral nucleocapsid protein expression, high lung viral load, and spleen and lymphoid atrophy associated with marked chemokine/cytokine activation were observed within the first week of virus challenge. The mean lung virus titer was between 105 and 107 TCID50/g. Challenged index hamsters consistently infected naive contact hamsters housed within the same cages, resulting in similar pathology but not weight loss. All infected hamsters recovered and developed mean serum neutralizing antibody titers ≥1:427 14 days postchallenge. Immunoprophylaxis with early convalescent serum achieved significant decrease in lung viral load but not in lung pathology. No consistent nonsynonymous adaptive mutation of the spike was found in viruses isolated from the infected hamsters. Conclusions Besides satisfying Koch’s postulates, this readily available hamster model is an important tool for studying transmission, pathogenesis, treatment, and vaccination against SARS-CoV-2.


2013 ◽  
Vol 61 (24) ◽  
pp. 5772-5782 ◽  
Author(s):  
Haiqiu Huang ◽  
Zhuohong Xie ◽  
Stephen M. Boue ◽  
Deepak Bhatnagar ◽  
Wallace Yokoyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document