scholarly journals Persimmon-derived tannin has antiviral effects and reduces the severity of infection and transmission of SARS-CoV-2 in a Syrian hamster model

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryutaro Furukawa ◽  
Masahiro Kitabatake ◽  
Noriko Ouji-Sageshima ◽  
Yuki Suzuki ◽  
Akiyo Nakano ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread across the world. Inactivating the virus in saliva and the oral cavity represents a reasonable approach to prevent human-to-human transmission because the virus is easily transmitted through oral routes by dispersed saliva. Persimmon-derived tannin is a condensed type of tannin that has strong antioxidant and antimicrobial activity. In this study, we investigated the antiviral effects of persimmon-derived tannin against SARS-CoV-2 in both in vitro and in vivo models. We found that persimmon-derived tannin suppressed SARS-CoV-2 titers measured by plaque assay in vitro in a dose- and time-dependent manner. We then created a Syrian hamster model by inoculating SARS-CoV-2 into hamsters’ mouths. Oral administration of persimmon-derived tannin dissolved in carboxymethyl cellulose before virus inoculation dramatically reduced the severity of pneumonia with lower virus titers compared with a control group inoculated with carboxymethyl cellulose alone. In addition, pre-administration of tannin to uninfected hamsters reduced hamster-to-hamster transmission of SARS-CoV-2 from a cohoused, infected donor cage mate. These data suggest that oral administration of persimmon-derived tannin may help reduce the severity of SARS-CoV-2 infection and transmission of the virus.

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Shigeru Miyagawa ◽  
Yoshiki Sakai ◽  
Satsuki Fukushima ◽  
Shigeo Masuda ◽  
Atsuhiro Saito ◽  
...  

Background: Although drugs such as beta blockers are reported to be effective for dilated cardiomyopathy (DCM), they are only effective in selected patients, and new therapeutics based on different mechanisms are still needed. We hypothesized that synthetic prostacyclin agonist (ONO-1301) would preserve the structural proteins in distressed cardiomyocytes, thus attenuating the deterioration of cardiac performance in the delta sarcoglycan-deficient hamster. Methods and Results: In an in vitro study, ONO-1301 was added to the culture medium of non-myocyte cells and the expression of several cytokines including VEGF was examined by ELISA. For the in vivo study, ONO-1301 (A: 3, n=5, B: 1, n=6, C: 0.3, n=7, D: 0.1 mg/kg/dose, n=7) was orally administered to delta-sarcoglycan-deficient hamsters every day from 8 to 20 weeks after birth. The control group (n=6) was untreated. Functional performance was evaluated by US before, 2, 4, 6, and 8 weeks after administration of ONO-1301. A histological analysis focusing on basement-membrane structural proteins, such as α-sarcoglycan, β-sarcoglycan, and α-dystroglycan, fibrosis, and hypertrophy was performed. In vitro, ONO-1301 enhanced the cytokine expressions dose dependently. In vivo, systolic function (EF) was gradually increased in the ONO-1301-treated groups, while it showed significant deterioration in the control group (45.7±2.9, 42.0±2.6, 32.3±1.0, 30.3±2.5, 26.3±2.7%, in groups A, B, C, D, and control, respectively, P<0.05). ONO-1301 also significantly attenuated the LV dilatation in a dose-dependent manner. Immunostaining revealed that all the cardiac structural proteins were preserved in the basement membrane of cardiomyocytes in the 3.0 mg/kg ONO-1301 treatment group, while they disappeared in the control. The % fibrosis and cell hypertrophy were significantly attenuated in the ONO-1301-treated group compared with the control. Conclusions: Oral administration of synthetic prostacyclin agonists, which can enhance cytokine expressions in non-myocyte cells, may preserve cardiac structural proteins in the delta sarcoglycan-deficient hamster, to maintain cardiac performance. This promising drug may inhibit the progression of the disease pathology in DCM, prolonging their life.


2021 ◽  
Author(s):  
Harshad R. Thacore ◽  
Abdul Gaffar ◽  
Seiyoung Yun ◽  
Agnes L. Chenine ◽  
Maria G. Ferrari ◽  
...  

Abstract SARS-CoV-2 and coronaviruses, enveloped RNA viruses, are major causes of acute human respiratory diseases. The aim of the study was to investigate the broad-spectrum antiviral effects of ethyl lauroyl arginine hydrochloride (ELAH) in in vitro and in vivo assays. Cell-based assays found that the pseudovirus VSV-SARS-CoV-2 was inhibited with an EC50 of 15 micrograms/ml, with complete inhibition achieved at 110 micrograms/ml. The effects were comparable to those observed with anti-SARS-CoV-2 antibody neutralization assays against VSV-SARS-CoV-2. Intranasal administration of the Wuhan strain of SARS-CoV-2 treated in vitro with ELAH inhibited the disease symptoms caused by the virus in a Syrian hamster model compared to that caused by the same dose of virus treated in vitro with medium alone. Subgenomic RNA and total RNA viral load were concomitantly reduced in the treated animals compared with the control group. In cell-based studies, pretreatment of susceptible cells with 1-10 micrograms/ml ELAH inhibited the attachment of the virus to the cells, as measured by cytopathic and high-resolution scanning electron microscopy (SEM) effects, suggesting that the primary mode of ELAH action was due to preventing the attachment of the virus to the cells. Collectively, the data suggest that ELAH could be a promising agent for the prevention of SARS infection through nasopharyngeal surfaces.


2021 ◽  
Author(s):  
Harshad R. Thacore ◽  
Abdul Gaffar ◽  
Seiyoung Yun ◽  
Agnes L. Chenine ◽  
Maria . G. Ferrari

Abstract SARS-CoV-2 and coronaviruses, enveloped RNA viruses, are major causes of acute human respiratory diseases. The aim of the study was to investigate the broad-spectrum antiviral effects of ethyl lauroyl arginine hydrochloride (ELAH) in in vitro and in vivo assays. Cell-based assays found that the pseudovirus VSV-SARS-CoV-2 was inhibited with an EC50 of 15 micrograms/ml, with complete inhibition achieved at 110 micrograms/ml. The effects were comparable to those observed with anti-SARS-CoV-2 antibody neutralization assays against VSV-SARS-CoV-2. Intranasal administration of the Wuhan strain of SARS-CoV-2 treated in vitro with ELAH inhibited the disease symptoms caused by the virus in a Syrian hamster model compared to that caused by the same dose of virus treated in vitro with medium alone. Subgenomic RNA and total RNA viral load were concomitantly reduced in the treated animals compared with the control group. In cell-based studies, pretreatment of susceptible cells with 1–10 micrograms/ml ELAH inhibited the attachment of the virus to the cells, as measured by cytopathic and high-resolution scanning electron microscopy (SEM) effects, suggesting that the primary mode of ELAH action was due to preventing the attachment of the virus to the cells. Collectively, the data suggest that ELAH could be a promising agent for the prevention of SARS infection through nasopharyngeal surfaces.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


2022 ◽  
Author(s):  
Shuofeng Yuan ◽  
Zi-Wei Ye ◽  
Ronghui Liang ◽  
Kaiming Tang ◽  
Anna Jinxia Zhang ◽  
...  

The newly emerging SARS-CoV-2 Omicron (B.1.1.529) variant first identified in South Africa in November 2021 is characterized by an unusual number of amino acid mutations in its spike that renders existing vaccines and therapeutic monoclonal antibodies dramatically less effective. The in vivo pathogenicity, transmissibility, and fitness of this new Variant of Concerns are unknown. We investigated these virological attributes of the Omicron variant in comparison with those of the currently dominant Delta (B.1.617.2) variant in the golden Syrian hamster COVID-19 model. Omicron-infected hamsters developed significantly less body weight losses, clinical scores, respiratory tract viral burdens, cytokine/chemokine dysregulation, and tissue damages than Delta-infected hamsters. The Omicron and Delta variant were both highly transmissible (100% vs 100%) via contact transmission. Importantly, the Omicron variant consistently demonstrated about 10-20% higher transmissibility than the already-highly transmissible Delta variant in repeated non-contact transmission studies (overall: 30/36 vs 24/36, 83.3% vs 66.7%). The Delta variant displayed higher fitness advantage than the Omicron variant without selection pressure in both in vitro and in vivo competition models. However, this scenario drastically changed once immune selection pressure with neutralizing antibodies active against the Delta variant but poorly active against the Omicron variant were introduced, with the Omicron variant significantly outcompeting the Delta variant. Taken together, our findings demonstrated that while the Omicron variant is less pathogenic than the Delta variant, it is highly transmissible and can outcompete the Delta variant under immune selection pressure. Next-generation vaccines and antivirals effective against this new VOC are urgently needed.


Pathogens ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Tomoyoshi Doki ◽  
Tomoyo Tarusawa ◽  
Tsutomu Hohdatsu ◽  
Tomomi Takano

Background: The cationic amphiphilic drug U18666A inhibits the proliferation of type I FIPV in vitro. In this study, we evaluated the in vivo antiviral effects of U18666A by administering it to SPF cats challenged with type I FIPV. Methods: Ten SPF cats were randomly assigned to two experimental groups. FIPV KU-2 were inoculated intraperitoneally to cats. The control group was administered PBS, and the U18666A-treated group was administered U18666A subcutaneously at 2.5 mg/kg on day 0, and 1.25 mg/kg on days 2 and 4 after viral inoculation. Results: Two of the five control cats administered PBS alone developed FIP. Four of the five cats administered U18666A developed no signs of FIP. One cat that temporarily developed fever, had no other clinical symptoms, and no gross lesion was noted on an autopsy after the end of the experiment. The FIPV gene was detected intermittently in feces and saliva regardless of the development of FIP or administration of U18666A. Conclusions: When U18666A was administered to cats experimentally infected with type I FIPV, the development of FIP might be suppressed compared with the control group. However, the number of animals with FIP is too low to establish anti-viral effect of U18666A in cats.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 478 ◽  
Author(s):  
Rasha Al-Rikabi ◽  
Hanady Al-Shmgani ◽  
Yaser Hassan Dewir ◽  
Salah El-Hendawy

(1) Background: Plant flavonoids are efficient in preventing and treating various diseases. This study aimed to evaluate the ability of hesperidin, a flavonoid found in citrus fruits, in inhibiting lipopolysaccharide (LPS) induced inflammation, which induced lethal toxicity in vivo, and to evaluate its importance as an antitumor agent in breast cancer. The in vivo experiments revealed the protective effects of hesperidin against the negative LPS effects on the liver and spleen of male mice. (2) Methods: In the liver, the antioxidant activity was measured by estimating the concentration of glutathione (GSH) and catalase (CAT), whereas in spleen, the concentration of cytokines including IL-33 and TNF-α was measured. The in vitro experiments including MTT assay, clonogenity test, and sulforhodamine 101 stain with DAPI (4′, 6-diamidino-2-phenylindole) were used to assess the morphological apoptosis in breast cancer cells. (3) Results: The results of this study revealed a significant increase in the IL-33 and TNF-α cytokine levels in LPS challenged mice along with a considerable elevation in glutathione (GSH); moreover, the catalase (CAT) level was higher compared to that of the control group. Cytotoxicity of the MCF-7 cell line revealed significant differences among the groups treated with different concentrations when compared to the control groups, in a concentration-dependent manner. Hesperidin significantly inhibited the colony formation of MCF7 cells when compared to that of control. Clear changes were observed in the cell shape, including cell shrinkage and chromatin condensation, which were associated with a later apoptotic stage. (4) Conclusion: The results indicate that hesperidin might be a potential candidate in preventing diseases.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5053-5053
Author(s):  
Jian Da Hu ◽  
Yi Huang ◽  
Yingyu Chen ◽  
Tiannan Wei ◽  
Tingbo Liu ◽  
...  

Abstract Baicalin is a traditional Chinese medicine with multiple biological effects. Some researches showed baicalin has anti-tumor effects in solid tumor, such as prostate cancer. In order to investigate its effects on proliferation inhibition and apoptosis induction in human lymphoma cell, we treated Burkitt lymphoma cell line CA46 with baicalin in vitro and in vivo of CA46 xenograft. Baicalin remarkably inhibited the cell proliferation, with an IC50 value of 10μM. Apoptosis was remarkably induced by baicalin in a dose-dependent manner, which was detected by Annexin V FITC/PI double staining analysis, TUNEL labeling method and DNA fragmentation respectively. Furthermore, RT-PCR showed that the mRNA expressions of c-myc and bcl-2 in treated CA46 cell decreased in a time-dependent manner. Western-Blot showed that the protein expressions of c-myc, bcl-2, procaspase-3 and PARP(116KD) in baicalin treated CA46 cell were down-regulated, while the expression of PARP(85KD) increased. Based on the results in vitro, we investigated in vivo efficacy of baicalin, alone or in combination with cytotoxic drug VP16, for treatment in CA46 nude mice xenograft. Baicalin with the dosage of 40mg/kg/d and 80kg/mg/d could remarkably inhibit the growth of the tumor compared with control group. Combination of baicalin and VP16 had better anti-tumor effects. Histological examination of tumor samples showed more necrotic cells in treated groups. And obvious apoptosis could be observed by electron microscope. No adverse events were found in treated groups. From above we could conclude that baicalin could efficiently induce proliferation inhibition and apoptosis of CA46 cells in vitro and in vivo, which may be related with the down-regulation of c-myc and bcl-2 expressions, as well as the up-regulation of caspase-3 activity.


1999 ◽  
Vol 77 (11) ◽  
pp. 886-895 ◽  
Author(s):  
Gordon Bolger ◽  
Jean-Claude Vigeant ◽  
Francine Liard ◽  
Bruno Simoneau ◽  
Diane Thibeault ◽  
...  

The human renin infused rat model (HRIRM) was used as an in vivo small-animal model for evaluating the efficacy of a collection of inhibitors of human renin. The intravenous infusion of recombinant human renin (2.4 µg·kg-1·min-1) in the ganglion-blocked, nephrectomized rat produced a mean blood pressor response of 47 ± 3 mmHg (1 mmHg = 133.3 Pa), which was reduced by captopril, enalkiren, and losartan in a dose-dependent manner following oral administration, with ED50 values of 0.3 ± 0.1, 2.5 ± 0.9, and 5.2 ± 1.6 mg/kg, respectively. A series of peptidomimetic P2-P3 butanediamide renin inhibitors inhibited purified recombinant human renin in vitro in a concentration-dependent manner, with IC50 values ranging from 0.4 to 20 nM at pH 6.0, with a higher range of IC50 values (0.8-80 nM) observed at pH 7.4. Following i.v. administration of renin inhibitors, the pressor response to infused human renin in the HRIRM was inhibited in a dose-dependent manner, with ED50 values ranging from 4 to 600 µg/kg. The in vivo inhibition of human renin following i.v. administration in the rat correlated significantly better with the in vitro inhibition of human renin at pH 7.4 (r = 0.8) compared with pH 6.0 (r = 0.5). Oral administration of renin inhibitors also resulted in a dose-dependent inhibition of the pressor response to infused human renin, with ED50 values ranging from 0.4 to 6.0 mg/kg and the identification of six renin inhibitors with an oral potency of <1 mg/kg. The ED50 of renin inhibitors for inhibition of angiotensin I formation in vivo was highly correlated (r = 0.9) with the ED50 for inhibition of the pressor response. These results demonstrate the high potency, dose dependence, and availability following oral administration of the butanediamide series of renin inhibitors.Key words: renin-angiotensin system, recombinant human renin, rat, renin inhibitors.


2011 ◽  
Vol 39 (06) ◽  
pp. 1193-1206 ◽  
Author(s):  
De-Peng Jiang ◽  
Qi Li ◽  
Jie Yang ◽  
Juliy M. Perelman ◽  
Victor P. Kolosov ◽  
...  

The aim of this study was to investigate the influence of scutellarin on mucus production induced by human neutrophil elastase (HNE) and the possible in vitro and in vivo mechanisms. To this purpose, cells were incubated with saline, scutellarin or gefitinib for 60 min and exposed to 0.1 μM HNE for 24 h. After being pretreated respectively with saline, scutellarin or gefitinib, rats were challenged intratracheally with HNE by means of nebulization for 30 days. The expression of mucin (MUC) 5AC, protein kinase C (PKC), and extracellular signal-regulated kinase 1/2 (ERK1/2) was assessed by ELISA, RT-PCR or Western blotting. The results showed that scutellarin inhibited MUC5AC mRNA and protein expressions induced by HNE in a concentration-dependent manner in vitro. In the in vivo model, scutellarin significantly attenuated MUC5AC mRNA expression and goblet cell hyperplasia in rats treated with HNE for 30 days, as well as decreased the phosporylation of PKC and ERK1/2 compared to the HNE control group. Therefore, our study showed that scutellarin could prevent mucus hypersecretion by inhibiting the PKC-ERK signaling pathway. Inhalation scutellarin may be valuable in the treatment of chronic inflammatory lung disease.


Sign in / Sign up

Export Citation Format

Share Document