scholarly journals Ribonuclease-resistant RNA Controls (Armored RNA) for Reverse Transcription-PCR, Branched DNA, and Genotyping Assays for Hepatitis C Virus

1999 ◽  
Vol 45 (12) ◽  
pp. 2079-2085 ◽  
Author(s):  
Cindy R WalkerPeach ◽  
Matthew Winkler ◽  
Dwight B DuBois ◽  
Brittan L Pasloske

Abstract Background: Comparison and evaluation of molecular diagnostic assays for the detection and quantification of hepatitis C virus (HCV) RNA have been limited by the lack of RNA controls and calibrators. Armored RNA® technology is a means for producing RNA that is completely protected from plasma ribonucleases. This method produces recombinant pseudoviral particles that are noninfectious and contain predefined RNA sequences. Methods: A consensus 412-base sequence from the 5′NCR/Core region of HCV subtype 2b was derived from 34 individually sequenced HCV genotype 2b variants. A DNA fragment encoding the consensus HCV-2b sequence was synthesized de novo, cloned, and expressed as an Armored RNA control. The resulting HCV-2b Armored RNA (AR-HCV-2b) contained the complete HCV-2b consensus RNA sequence encapsidated within a protective protein coat. Results: AR-HCV-2b was fully recoverable from human plasma incubated at 4 °C for >300 days. The particles were tested in three clinical assay formats: AmplicorTM HCV Monitor 1.0, QuantiplexTM HCV RNA 2.0, and INNO-LiPATM HCV II. When added into seronegative, nonviremic plasma, AR-HCV-2b showed reproducible signals and linear dilutions in both the Amplicor and Quantiplex assays. AR-HCV-2b was correctly identified as subtype 2b in the INNO-LiPA line probe assay. Conclusion: The HCV-2b Armored RNA control is a versatile, durable, ribonuclease-resistant viral RNA control that is compatible in three different clinical assay formats.

2006 ◽  
Vol 80 (3) ◽  
pp. 1181-1190 ◽  
Author(s):  
Heather B. Nelson ◽  
Hengli Tang

ABSTRACT An intimate relationship between hepatitis C virus (HCV) replication and the physiological state of the host liver cells has been reported. In particular, a highly reproducible and reversible inhibitory effect of high cell density on HCV replication was observed: high levels of HCV RNA and protein can be detected in actively growing cells but decline sharply when the replicon cells reach confluence. Arrested cell growth of confluent cells has been proposed to be responsible for the inhibitory effect. Indeed, other means of arresting cell growth have also been shown to inhibit HCV replication. Here, we report a detailed study of the effect of cell growth and confluence on HCV replication using a flow cytometry-based assay that is not biased against cytostasis and reduced cell number. Although we readily reproduced the inhibitory effect of cell confluence on HCV replication, we found no evidence of inhibition by serum starvation, which arrested cell growth as expected. In addition, we observed no inhibitory effect by agents that perturb the cell cycle. Instead, our results suggest that the reduced intracellular pools of nucleosides account for the suppression of HCV expression in confluent cells, possibly through the shutoff of the de novo nucleoside biosynthetic pathway when cells become confluent. Adding exogenous uridine and cytidine to the culture medium restored HCV replication and expression in confluent cells. These results suggest that cell growth arrest is not sufficient for HCV replicon inhibition and reveal a mechanism for HCV RNA inhibition by cell confluence.


2014 ◽  
Vol 58 (12) ◽  
pp. 7215-7224 ◽  
Author(s):  
Auda A. Eltahla ◽  
Enoch Tay ◽  
Mark W. Douglas ◽  
Peter A. White

ABSTRACTDirect-acting antivirals (DAAs) targeting proteins encoded by the hepatitis C virus (HCV) genome have great potential for the treatment of HCV infections. However, the efficacy of DAAs designed to target genotype 1 (G1) HCV against non-G1 viruses has not been characterized fully. In this study, we investigated the inhibitory activities of nonnucleoside inhibitors (NNIs) against the HCV RNA-dependent RNA polymerase (RdRp). We examined the ability of six NNIs to inhibit G1b, G2a, and G3a subgenomic replicons in cell culture, as well asin vitrotranscription by G1b and G3a recombinant RdRps. Of the six G1 NNIs, only the palm II binder nesbuvir demonstrated activity against G1, G2, and G3 HCV, in both replicon and recombinant enzyme models. The thumb I binder JTK-109 also inhibited G1b and G3a replicons and recombinant enzymes but was 41-fold less active against the G2a replicon. The four other NNIs, which included a palm I binder (setrobuvir), two thumb II binders (lomibuvir and filibuvir), and a palm β-hairpin binder (tegobuvir), all showed at least 40-fold decreases in potency against G2a and G3a replicons and the G3a enzyme. This antiviral resistance was largely conferred by naturally occurring amino acid residues in the G2a and G3a RdRps that are associated with G1 resistance. Lomibuvir and filibuvir (thumb II binders) inhibited primer-dependent but notde novoactivity of the G1b polymerase. Surprisingly, these compounds instead specifically enhanced thede novoactivity at concentrations of ≥100 nM. These findings highlight a potential differential mode of RdRp inhibition for HCV NNIs, depending on their prospective binding pockets, and also demonstrate a surprising enhancement ofde novoactivity for thumb RdRp binders. These results also provide a better understanding of the antiviral coverage for these polymerase inhibitors, which will likely be used in future combinational interferon-free therapies.


2014 ◽  
Vol 89 (4) ◽  
pp. 2052-2063 ◽  
Author(s):  
Amy L. Cherry ◽  
Caitriona A. Dennis ◽  
Andrew Baron ◽  
Leslie E. Eisele ◽  
Pia A. Thommes ◽  
...  

ABSTRACTThe RNA-dependent RNA polymerase (RdRp) of hepatitis C virus (HCV) is essential for viral genome replication. Crystal structures of the HCV RdRp reveal two C-terminal features, a β-loop and a C-terminal arm, suitably located for involvement in positioning components of the initiation complex. Here we show that these two elements intimately regulate template and nucleotide binding, initiation, and elongation. We constructed a series of β-loop and C-terminal arm mutants, which were used forin vitroanalysis of RdRpde novoinitiation and primer extension activities. All mutants showed a substantial decrease in initiation activities but a marked increase in primer extension activities, indicating an ability to form more stable elongation complexes with long primer-template RNAs. Structural studies of the mutants indicated that these enzyme properties might be attributed to an increased flexibility in the C-terminal features resulting in a more open polymerase cleft, which likely favors the elongation process but hampers the initiation steps. A UTP cocrystal structure of one mutant shows, in contrast to the wild-type protein, several alternate conformations of the substrate, confirming that even subtle changes in the C-terminal arm result in a more loosely organized active site and flexible binding modes of the nucleotide. We used a subgenomic replicon system to assess the effects of the same mutations on viral replication in cells. Even the subtlest mutations either severely impaired or completely abolished the ability of the replicon to replicate, further supporting the concept that the correct positioning of both the β-loop and C-terminal arm plays an essential role during initiation and in HCV replication in general.IMPORTANCEHCV RNA polymerase is a key target for the development of directly acting agents to cure HCV infections, which necessitates a thorough understanding of the functional roles of the various structural features of the RdRp. Here we show that even highly conservative changes, e.g., Tyr→Phe or Asp→Glu, in these seemingly peripheral structural features have profound effects on the initiation and elongation properties of the HCV polymerase.


2013 ◽  
Vol 18 (9) ◽  
pp. 1027-1034 ◽  
Author(s):  
Auda A. Eltahla ◽  
Kurt Lackovic ◽  
Christopher Marquis ◽  
John-Sebastian Eden ◽  
Peter A. White

The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) plays an essential role in the replication of HCV and is a key target for novel antiviral therapies. Several RdRp inhibitors are in clinical trials and have increased response rates when combined with current interferon-based therapies for genotype 1 (G1) HCV patients. These inhibitors, however, show poor efficacy against non-G1 genotypes, including G3a, which represents ~20% of HCV cases globally. Here, we used a commercially available fluorescent dye to characterize G3a HCV RdRp in vitro. RdRp activity was assessed via synthesis of double-stranded RNA from the single-stranded RNA poly(C) template. The assay was miniaturized to a 384-well microplate format and a pilot high-throughput screen was conducted using 10,208 “lead-like” compounds, randomly selected to identify inhibitors of HCV G3a RdRp. Of 150 compounds demonstrating greatest inhibition, 10 were confirmed using both fluorescent and radioactive assays. The top two inhibitors (HAC001 and HAC002) demonstrated specific activity, with an IC50 of 12.7 µM and 1.0 µM, respectively. In conclusion, we describe simple, fluorescent-based high-throughput screening (HTS) for the identification of inhibitors of de novo RdRp activity, using HCV G3a RdRp as the target. The HTS system could be used against any positive-sense RNA virus that cannot be cultured.


1999 ◽  
Vol 73 (9) ◽  
pp. 7694-7702 ◽  
Author(s):  
Jong-Won Oh ◽  
Takayoshi Ito ◽  
Michael M. C. Lai

ABSTRACT All of the previously reported recombinant RNA-dependent RNA polymerases (RdRp), the NS5B enzymes, of hepatitis C virus (HCV) could function only in a primer-dependent and template-nonspecific manner, which is different from the expected properties of the functional viral enzymes in the cells. We have now expressed a recombinant NS5B that is able to synthesize a full-length HCV genome in a template-dependent and primer-independent manner. The kinetics of RNA synthesis showed that this RdRp can initiate RNA synthesis de novo and yield a full-length RNA product of genomic size (9.5 kb), indicating that it did not use the copy-back RNA as a primer. This RdRp was also able to accept heterologous viral RNA templates, including poly(A)- and non-poly(A)-tailed RNA, in a primer-independent manner, but the products in these cases were heterogeneous. The RdRp used some homopolymeric RNA templates only in the presence of a primer. By using the 3′-end 98 nucleotides (nt) of HCV RNA, which is conserved in all genotypes of HCV, as a template, a distinct RNA product was generated. Truncation of 21 nt from the 5′ end or 45 nt from the 3′ end of the 98-nt RNA abolished almost completely its ability to serve as a template. Inclusion of the 3′-end variable sequence region and the U-rich tract upstream of the X region in the template significantly enhanced RNA synthesis. The 3′ end of minus-strand RNA of HCV genome also served as a template, and it required a minimum of 239 nt from the 3′ end. These data defined the cis-acting sequences for HCV RNA synthesis at the 3′ end of HCV RNA in both the plus and minus senses. This is the first recombinant HCV RdRp capable of copying the full-length HCV RNA in the primer-independent manner expected of the functional HCV RNA polymerase.


Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 696 ◽  
Author(s):  
Eun Byul Lee ◽  
Pil Soo Sung ◽  
Jung-Hee Kim ◽  
Dong Jun Park ◽  
Wonhee Hur ◽  
...  

In this study, we investigated the role of microRNA-99a (miR-99a) in hepatitis C virus (HCV) replication and lipogenesis in hepatocytes. Cell-culture-derived HCV (HCVcc) infection caused down-regulation of miR-99a in Huh-7 cells, and the relative levels of miR-99a were significantly lower in the sera of the HCV-infected patients than in those of healthy controls. Transfection of miR-99a-5p mimics resulted in a decrease in the intracellular and secreted HCV RNA levels. It also caused a decreased mammalian target of rapamycin (mTOR) protein level and phosphorylation of its downstream targets in HCV-replicating cells. Sterol regulatory element binding protein (SREBP)-1c expression and intracellular lipid accumulation decreased when either miR-99a-5p mimics or si-mTOR was transfected in oleic acid-treated Huh-7 cells. Overexpression of mTOR rescued HCV RNA replication and lipid droplet accumulation in miR-99a-5p mimics-transfected HCV replicon cells. Our data demonstrated that miR-99a ameliorates intracellular lipid accumulation by regulating mTOR/SREBP-1c and causes inefficient replication and packaging of intracellular HCV.


2006 ◽  
Vol 50 (12) ◽  
pp. 4161-4169 ◽  
Author(s):  
Hélène Dutartre ◽  
Cécile Bussetta ◽  
Joëlle Boretto ◽  
Bruno Canard

ABSTRACT The hepatitis C virus (HCV) RNA-dependent RNA polymerase NS5B is an important target for antiviral therapies. NS5B is able to initiate viral RNA synthesis de novo and then switch to a fast and processive RNA elongation synthesis mode. The nucleotide analogue 2′-C-methyl CTP (2′-C-Me-CTP) is the active metabolite of NM283, a drug currently in clinical phase II trials. The resistance mutation S282T can be selected in HCV replicon studies. Likewise, 2′-O-Me nucleotides are active both against the purified polymerase and in replicon studies. We have determined the molecular mechanism by which the S282T mutation confers resistance to 2′-modified nucleotide analogues. 2′-C-Me-CTP is no longer incorporated during the initiation step of RNA synthesis and is discriminated 21-fold during RNA elongation by the NS5B S282T mutant. Strikingly, 2′-O-methyl CTP sensitivity does not change during initiation, but the analogue is no longer incorporated during elongation. This mutually exclusive resistance mechanism suggests not only that “2′-conformer” analogues target distinct steps in RNA synthesis but also that these analogues have interesting potential in combination therapies. In addition, the presence of the S282T mutation induces a general cost in terms of polymerase efficiency that may translate to decreased viral fitness: natural nucleotides become 5- to 20-fold less efficiently incorporated into RNA by the NS5B S282T mutant. As in the case for human immunodeficiency virus, our results might provide a mechanistic basis for the rational combination of drugs for low-fitness viruses.


2008 ◽  
Vol 52 (4) ◽  
pp. 1419-1429 ◽  
Author(s):  
Peiyong Huang ◽  
Dane A. Goff ◽  
Qi Huang ◽  
Anthony Martinez ◽  
Xiang Xu ◽  
...  

ABSTRACT A novel small-molecule inhibitor, referred to here as R706, was discovered in a high-throughput screen of chemical libraries against Huh-7-derived replicon cells carrying autonomously replicating subgenomic RNA of hepatitis C virus (HCV). R706 was highly potent in blocking HCV RNA replication as measured by real-time reverse transcription-PCR and Western blotting of R706-treated replicon cells. Structure-activity iterations of the R706 series yielded a lead compound, R803, that was more potent and highly specific for HCV replication, with no significant inhibitory activity against a panel of HCV-related positive-stranded RNA viruses. Furthermore, HCV genotype 1 replicons displayed markedly higher sensitivity to R803 treatment than a genotype 2a-derived replicon. In addition, R803 was tested by a panel of biochemical and cell-based assays for on-target and off-target activities, and the data suggested that the compound had a therapeutic window close to 100-fold, while its exact mechanism of action remained elusive. We found that R803 was more effective than alpha interferon (IFN-α) at blocking HCV RNA replication in the replicon model. In combination studies, R803 showed a weak synergistic effect with IFN-α/ribavirin but only additive effects with a protease inhibitor and an allosteric inhibitor of RNA-dependent RNA polymerase (20). We conclude that R803 and related heterocyclic compounds constitute a new class of HCV-specific inhibitors that could potentially be developed as a treatment for HCV infection.


2002 ◽  
Vol 76 (7) ◽  
pp. 3482-3492 ◽  
Author(s):  
Stéphane Bressanelli ◽  
Licia Tomei ◽  
Félix A. Rey ◽  
Raffaele De Francesco

ABSTRACT We report here the results of a systematic high-resolution X-ray crystallographic analysis of complexes of the hepatitis C virus (HCV) RNA polymerase with ribonucleoside triphosphates (rNTPs) and divalent metal ions. An unexpected observation revealed by this study is the existence of a specific rGTP binding site in a shallow pocket at the molecular surface of the enzyme, 30 Å away from the catalytic site. This previously unidentified rGTP pocket, which lies at the interface between fingers and thumb, may be an allosteric regulatory site and could play a role in allowing alternative interactions between the two domains during a possible conformational change of the enzyme required for efficient initiation. The electron density map at 1.7-Å resolution clearly shows the mode of binding of the guanosine moiety to the enzyme. In the catalytic site, density corresponding to the triphosphates of nucleotides bound to the catalytic metals was apparent in each complex with nucleotides. Moreover, a network of triphosphate densities was detected; these densities superpose to the corresponding moieties of the nucleotides observed in the initiation complex reported for the polymerase of bacteriophage φ6, strengthening the proposal that the two enzymes initiate replication de novo by similar mechanisms. No equivalent of the protein stacking platform observed for the priming nucleotide in the φ6 enzyme is present in HCV polymerase, however, again suggesting that a change in conformation of the thumb domain takes place upon template binding to allow for efficient de novo initiation of RNA synthesis.


2011 ◽  
Vol 56 (2) ◽  
pp. 830-837 ◽  
Author(s):  
Guanghui Yi ◽  
Jerome Deval ◽  
Baochang Fan ◽  
Hui Cai ◽  
Charlotte Soulard ◽  
...  

ABSTRACTFilibuvir and VX-222 are nonnucleoside inhibitors (NNIs) that bind to the thumb II allosteric pocket of the hepatitis C virus (HCV) RNA-dependent RNA polymerase. Both compounds have shown significant promise in clinical trials and, therefore, it is relevant to better understand their mechanisms of inhibition. In our study, filibuvir and VX-222 inhibited the 1b/Con1 HCV subgenomic replicon, with 50% effective concentrations (EC50s) of 70 nM and 5 nM, respectively. Using several RNA templates in biochemical assays, we found that both compounds preferentially inhibited primer-dependent RNA synthesis but had either no or only modest effects onde novo-initiated RNA synthesis. Filibuvir and VX-222 bind to the HCV polymerase with dissociation constants of 29 and 17 nM, respectively. Three potential resistance mutations in the thumb II pocket were analyzed for effects on inhibition by the two compounds. The M423T substitution in the RNA polymerase was at least 100-fold more resistant to filibuvir in the subgenomic replicon and in the enzymatic assays. This resistance was the result of a 250-fold loss in the binding affinity (Kd) of the mutated enzyme to filibuvir. In contrast, the inhibitory activity of VX-222 was only modestly affected by the M423T substitution but more significantly affected by an I482L substitution.


Sign in / Sign up

Export Citation Format

Share Document