scholarly journals Absence of Population Genetic Structure Among Breeding Colonies of the Waved Albatross

The Condor ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 440-445 ◽  
Author(s):  
Kathryn P. Huyvaert ◽  
Patricia G. Parker

Abstract We used four variable microsatellite loci to examine the distribution of genetic variation and degree of genetic structuring among three subcolonies of Waved Albatrosses (Phoebastria irrorata). The breeding population of this species is almost entirely limited to the island of Española in the Galápagos Archipelago. Such strong philopatry could lead to population genetic structure among subcolonies on the island. Pairwise values of the FST analog, θ, calculated from microsatellite genotypes, were all less than 0.012, indicating little genetic differentiation and the presence of gene flow throughout the population.

2021 ◽  
Author(s):  
◽  
Angel Jimenez Brito

<p>Mugil cephalus is a cosmopolitan fish species found in most coastal waters from tropical to temperate zones. It is a species common in the near-shore marine environment, and known to reside in estuarine and freshwater systems. Adult M. cephalus move out to sea to spawn in aggregations. Their larvae can drift on surface ocean currents for over a month before recruitment to nursery grounds. Mugil cephalus is a species that is closely associated with the coastal environment, but it is capable of interoceanic migrations. Population genetic studies have reported high levels of genetic differentiation among populations in the Mediterranean, Atlantic and western Pacific. However, there is no evidence to suggest reproductive incompatibility has arisen among populations. In New Zealand M. cephalus supports important recreational, commercial and customary fisheries, but very little is known about the distribution and connectivity among populations.  The aim of this study was to use nuclear microsatellite DNA (msatDNA) and mitochondrial DNA (mtDNA) markers to describe the population genetic structure, connectivity patterns and to determine the phylogeographic history of New Zealand M. cephalus populations. Total of 850 samples were collected (576 adults and 274 juveniles) during the summers of 2010 and 2014-2015 from 15 locations around coastal and inland waters of the North Island, and one location in Marlborough Sounds. In addition, 245 mtDNA sequences were added from previously published studies and used to outgroup the New Zealand population and place it into the context of the other Pacific populations.  Seven msatDNA loci were isolated and used to determine the population genetic structure and connectivity patterns of M. cephalus in New Zealand. Admixture of four genetically distinct groups or populations was identified and a chaotic spatial distribution of allele frequencies. Within each population there was significant gene flow among locations, no pattern of genetic isolation-by-distance was identified and there was a high proportion of non-migrant individuals. There was evidence of bottlenecks and seasonal reproductive variation of adults, which could explain the significant shifts in the effective population size among locations.  To test whether the pattern of genetic variation in M. cephalus populations was the result of seasonal variability in the reproductive success of adults, DNA from adult and juvenile samples were used to test for differences in the levels of genetic variation between generations (cohorts). Juveniles were grouped by age classes and compared to the adults. The levels of genetic diversity within the groups of juveniles were compared to the adult population and significant genetic bottlenecks between juveniles and adults were detected. This pattern was consistent with the Sweepstake-Reproductive-Success hypothesis. Two spawning groups in the adults were identified, an early spawning group and a late spawning group.  The analysis of DNA sequence data from the mtDNA Cytochrome Oxidase subunit 1 (COX1) gene and D-loop region showed two sympatric haplogroups of M. cephalus. New Zealand was most likely colonised by M. cephalus migrants from different population sources from the Pacific first ~50,000 and a second wave of migrants from Australia between ~20, 000 and ~16,000 years ago. High levels of gene flow were detected, but there has not been enough time for genetic drift to completely sort the lineages.  The findings of this thesis research will help with the understanding of aspects of M. cephalus dispersal and the genetic structure of populations. The patterns of connectivity can be used to better align the natural boundaries of wild populations to the fishery management stock structure. Understanding the reproductive units, levels of genetic diversity and the patterns of reproduction of M. cephalus will assist management efforts to focus on the key habitats threats, risks and the long-term sustainability of the species.</p>


Author(s):  
Kimberly A. With

Landscape genetics explores how the microevolutionary processes of gene flow, genetic drift, and natural selection interact with environmental heterogeneity to shape population genetic structure. This chapter begins with a review of the various types of genetic data used in population and landscape genetics and discusses how these data are used to estimate genetic variation (heterozygosity) and gene flow among populations. From there, the chapter considers how population genetic structure can be assayed, which then segues into an analysis of the landscape correlates of population genetic structure, the identification of movement corridors and barriers to gene flow, and the relative effects of current versus historical landscape factors on population genetic structure. The chapter concludes with an overview of evolutionary landscape genetics, by considering the adaptive potential of populations in response to future landscape and climatic changes.


2004 ◽  
Vol 82 (3) ◽  
pp. 316-321 ◽  
Author(s):  
Steven R Griffin ◽  
Spencer CH Barrett

Trillium erectum L. is an insect-pollinated understory herb widespread in forests of eastern North America. Marker gene studies indicate that the species has a mixed mating system, but aspects of population genetic structure have not been investigated. Using 10 allozyme loci, we measured genetic variation within and among 23 populations sampled from throughout the species' range. Overall, T. erectum displayed moderate levels of genetic diversity in comparison with other herbaceous plants. The percentage of loci that were polymorphic was 52%, with average values (±SE) of 1.20 ± 0.02, 0.08 ± 0.01, and 0.13 ± 0.01 for the number of alleles per locus (A), observed heterozygosity (Ho), and expected heterozygosity (He), respectively. There was evidence of inbreeding within populations (Fis = 0.39, 95% CI 0.26–0.55) and significant population differentiation (Fst = 0.16, 0.05–0.24). Analysis of genetic data provided no evidence of isolation by distance, and together with the occurrence of population subdivision, this suggests that there is relatively limited contemporary gene flow among populations. Northern populations of T. erectum tended to have less genetic variability than southern populations, probably as a result of historical factors associated with post glacial migration. Limited opportunities for gene dispersal as a result of low plant densities, the capacity for self-fertilization, and local seed dispersal by ants are likely to be the main factors maintaining contemporary patterns of genetic variation in T. erectum. Key words: allozymes, genetic diversity, gene flow, population genetic structure, Trillium.


2021 ◽  
Author(s):  
◽  
Angel Jimenez Brito

<p>Mugil cephalus is a cosmopolitan fish species found in most coastal waters from tropical to temperate zones. It is a species common in the near-shore marine environment, and known to reside in estuarine and freshwater systems. Adult M. cephalus move out to sea to spawn in aggregations. Their larvae can drift on surface ocean currents for over a month before recruitment to nursery grounds. Mugil cephalus is a species that is closely associated with the coastal environment, but it is capable of interoceanic migrations. Population genetic studies have reported high levels of genetic differentiation among populations in the Mediterranean, Atlantic and western Pacific. However, there is no evidence to suggest reproductive incompatibility has arisen among populations. In New Zealand M. cephalus supports important recreational, commercial and customary fisheries, but very little is known about the distribution and connectivity among populations.  The aim of this study was to use nuclear microsatellite DNA (msatDNA) and mitochondrial DNA (mtDNA) markers to describe the population genetic structure, connectivity patterns and to determine the phylogeographic history of New Zealand M. cephalus populations. Total of 850 samples were collected (576 adults and 274 juveniles) during the summers of 2010 and 2014-2015 from 15 locations around coastal and inland waters of the North Island, and one location in Marlborough Sounds. In addition, 245 mtDNA sequences were added from previously published studies and used to outgroup the New Zealand population and place it into the context of the other Pacific populations.  Seven msatDNA loci were isolated and used to determine the population genetic structure and connectivity patterns of M. cephalus in New Zealand. Admixture of four genetically distinct groups or populations was identified and a chaotic spatial distribution of allele frequencies. Within each population there was significant gene flow among locations, no pattern of genetic isolation-by-distance was identified and there was a high proportion of non-migrant individuals. There was evidence of bottlenecks and seasonal reproductive variation of adults, which could explain the significant shifts in the effective population size among locations.  To test whether the pattern of genetic variation in M. cephalus populations was the result of seasonal variability in the reproductive success of adults, DNA from adult and juvenile samples were used to test for differences in the levels of genetic variation between generations (cohorts). Juveniles were grouped by age classes and compared to the adults. The levels of genetic diversity within the groups of juveniles were compared to the adult population and significant genetic bottlenecks between juveniles and adults were detected. This pattern was consistent with the Sweepstake-Reproductive-Success hypothesis. Two spawning groups in the adults were identified, an early spawning group and a late spawning group.  The analysis of DNA sequence data from the mtDNA Cytochrome Oxidase subunit 1 (COX1) gene and D-loop region showed two sympatric haplogroups of M. cephalus. New Zealand was most likely colonised by M. cephalus migrants from different population sources from the Pacific first ~50,000 and a second wave of migrants from Australia between ~20, 000 and ~16,000 years ago. High levels of gene flow were detected, but there has not been enough time for genetic drift to completely sort the lineages.  The findings of this thesis research will help with the understanding of aspects of M. cephalus dispersal and the genetic structure of populations. The patterns of connectivity can be used to better align the natural boundaries of wild populations to the fishery management stock structure. Understanding the reproductive units, levels of genetic diversity and the patterns of reproduction of M. cephalus will assist management efforts to focus on the key habitats threats, risks and the long-term sustainability of the species.</p>


Nematology ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 165-177 ◽  
Author(s):  
Rasha Haj Nuaima ◽  
Johannes Roeb ◽  
Johannes Hallmann ◽  
Matthias Daub ◽  
Holger Heuer

Summary Characterising the non-neutral genetic variation within and among populations of plant-parasitic nematodes is essential to determine factors shaping the population genetic structure. This study describes the genetic variation of the parasitism gene vap1 within and among geographic populations of the beet cyst nematode Heterodera schachtii. Forty populations of H. schachtii were sampled at four spatial scales: 695 km, 49 km, 3.1 km and 0.24 km. DGGE fingerprinting showed significant differences in vap1 patterns among populations. High similarity of vap1 patterns appeared between geographically close populations, and occasionally among distant populations. Analysis of spatially sampled populations within fields revealed an effect of tillage direction on the vap1 similarity for two of four studied fields. Overall, geographic distance and similarity of vap1 patterns of H. schachtii populations were negatively correlated. In conclusion, the population genetic structure was shaped by the interplay between the genetic adaptation and the passive transport of this nematode.


2021 ◽  
Vol 15 (2) ◽  
pp. e0009139
Author(s):  
Maria Angenica F. Regilme ◽  
Thaddeus M. Carvajal ◽  
Ann–Christin Honnen ◽  
Divina M. Amalin ◽  
Kozo Watanabe

Dengue is endemic in tropical and subtropical countries and is transmitted mainly by Aedes aegypti. Mosquito movement can be affected by human-made structures such as roads that can act as a barrier. Roads can influence the population genetic structure of Ae. aegypti. We investigated the genetic structure and gene flow of Ae. aegypti as influenced by a primary road, España Boulevard (EB) with 2000-meter-long stretch and 24-meters-wide in a very fine spatial scale. We hypothesized that Ae. aegypti populations separated by EB will be different due to the limited gene flow as caused by the barrier effect of the road. A total of 359 adults and 17 larvae Ae. aegypti were collected from June to September 2017 in 13 sites across EB. North (N1-N8) and South (S1-S5) comprised of 211 and 165 individuals, respectively. All mosquitoes were genotyped at 11 microsatellite loci. AMOVA FST indicated significant genetic differentiation across the road. The constructed UPGMA dendrogram found 3 genetic groups revealing the clear separation between North and South sites across the road. On the other hand, Bayesian cluster analysis showed four genetic clusters (K = 4) wherein each individual samples have no distinct genetic cluster thus genetic admixture. Our results suggest that human-made landscape features such as primary roads are potential barriers to mosquito movement thereby limiting its gene flow across the road. This information is valuable in designing an effective mosquito control program in a very fine spatial scale.


2015 ◽  
Vol 101 (6) ◽  
pp. 671 ◽  
Author(s):  
Christina A. Sarkissian ◽  
Sara K. Campbell ◽  
Guha Dharmarajan ◽  
Joseph Jacquot ◽  
L. Kristen Page ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document