Circulating uromodulin inhibits vascular calcification by interfering with pro-inflammatory cytokine signalling

Author(s):  
Ioana Alesutan ◽  
Trang T D Luong ◽  
Nadeshda Schelski ◽  
Jaber Masyout ◽  
Susanne Hille ◽  
...  

Abstract Aims Uromodulin is produced exclusively in the kidney and secreted into both urine and blood. Serum levels of uromodulin are correlated with kidney function and reduced in chronic kidney disease (CKD) patients, but physiological functions of serum uromodulin are still elusive. This study investigated the role of uromodulin in medial vascular calcification, a key factor associated with cardiovascular events and mortality in CKD patients. Methods and results Experiments were performed in primary human (HAoSMCs) and mouse (MOVAS) aortic smooth muscle cells, cholecalciferol overload and subtotal nephrectomy mouse models and serum from CKD patients. In three independent cohorts of CKD patients, serum uromodulin concentrations were inversely correlated with serum calcification propensity. Uromodulin supplementation reduced phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs. In human serum, pro-inflammatory cytokines tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β) co-immunoprecipitated with uromodulin. Uromodulin inhibited TNFα and IL-1β-induced osteo-/chondrogenic signalling and activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated β cells (NF-kB) as well as phosphate-induced NF-kB-dependent transcriptional activity in HAoSMCs. In vivo, adeno-associated virus (AAV)-mediated overexpression of uromodulin ameliorated vascular calcification in mice with cholecalciferol overload. Conversely, cholecalciferol overload-induced vascular calcification was aggravated in uromodulin-deficient mice. In contrast, uromodulin overexpression failed to reduce vascular calcification during renal failure in mice. Carbamylated uromodulin was detected in serum of CKD patients and uromodulin carbamylation inhibited its anti-calcific properties in vitro. Conclusions Uromodulin counteracts vascular osteo-/chondrogenic transdifferentiation and calcification, at least in part, through interference with cytokine-dependent pro-calcific signalling. In CKD, reduction and carbamylation of uromodulin may contribute to vascular pathology.

2021 ◽  
Vol 135 (3) ◽  
pp. 515-534
Author(s):  
Trang Thi Doan Luong ◽  
Rashad Tuffaha ◽  
Mirjam Schuchardt ◽  
Barbara Moser ◽  
Nadeshda Schelski ◽  
...  

Abstract In chronic kidney disease (CKD), hyperphosphatemia is a key factor promoting medial vascular calcification, a common complication associated with cardiovascular events and high mortality. Vascular calcification involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs), but the complex signaling events inducing pro-calcific pathways are incompletely understood. The present study investigated the role of acid sphingomyelinase (ASM)/ceramide as regulator of VSMC calcification. In vitro, both, bacterial sphingomyelinase and phosphate increased ceramide levels in VSMCs. Bacterial sphingomyelinase as well as ceramide supplementation stimulated osteo-/chondrogenic transdifferentiation during control and high phosphate conditions and augmented phosphate-induced calcification of VSMCs. Silencing of serum- and glucocorticoid-inducible kinase 1 (SGK1) blunted the pro-calcific effects of bacterial sphingomyelinase or ceramide. Asm deficiency blunted vascular calcification in a cholecalciferol-overload mouse model and ex vivo isolated-perfused arteries. In addition, Asm deficiency suppressed phosphate-induced osteo-/chondrogenic signaling and calcification of cultured VSMCs. Treatment with the functional ASM inhibitors amitriptyline or fendiline strongly blunted pro-calcific signaling pathways in vitro and in vivo. In conclusion, ASM/ceramide is a critical upstream regulator of vascular calcification, at least partly, through SGK1-dependent signaling. Thus, ASM inhibition by repurposing functional ASM inhibitors to reduce the progression of vascular calcification during CKD warrants further study.


2012 ◽  
Vol 449 (2) ◽  
pp. 333-341 ◽  
Author(s):  
Chiara Saggioro ◽  
Anne Olliver ◽  
Bianca Sclavi

The DnaA protein is a key factor for the regulation of the timing and synchrony of initiation of bacterial DNA replication. The transcription of the dnaA gene in Escherichia coli is regulated by two promoters, dnaAP1 and dnaAP2. The region between these two promoters contains several DnaA-binding sites that have been shown to play an important role in the negative auto-regulation of dnaA expression. The results obtained in the present study using an in vitro and in vivo quantitative analysis of the effect of mutations to the high-affinity DnaA sites reveal an additional effect of positive autoregulation. We investigated the role of transcription autoregulation in the change of dnaA expression as a function of temperature. While negative auto-regulation is lost at dnaAP1, the effects of both positive and negative autoregulation are maintained at the dnaAP2 promoter upon lowering the growth temperature. These observations can be explained by the results obtained in vitro showing a difference in the temperature-dependence of DnaA–ATP binding to its high- and low-affinity sites, resulting in a decrease in DnaA–ATP oligomerization at lower temperatures. The results of the present study underline the importance of the role for autoregulation of gene expression in the cellular adaptation to different growth temperatures.


2021 ◽  
Vol 118 (37) ◽  
pp. e2021013118 ◽  
Author(s):  
Sebastian Mathes ◽  
Alexandra Fahrner ◽  
Umesh Ghoshdastider ◽  
Hannes A. Rüdiger ◽  
Michael Leunig ◽  
...  

Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus–mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus <55 y showed activation of FGF-2–dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.


1998 ◽  
Vol 275 (2) ◽  
pp. R502-R508 ◽  
Author(s):  
Xianzhong Meng ◽  
Lihua Ao ◽  
Daniel R. Meldrum ◽  
Brian S. Cain ◽  
Brian D. Shames ◽  
...  

Exogenous tumor necrosis factor-α (TNF-α) induces delayed myocardial depression in vivo but promotes rapid myocardial depression in vitro. The temporal relationship between endogenous TNF-α and endotoxemic myocardial depression is unclear, and the role of TNF-α in this myocardial disorder remains controversial. Using a rat model of endotoxemia not complicated by shock, we sought to determine 1) the temporal relationship of changes in circulating and myocardial TNF-α with myocardial depression, 2) the influences of protein synthesis inhibition or immunosuppression on TNF-α production and myocardial depression, and 3) the influence of neutralization of TNF-α on myocardial depression. Rats were treated with lipopolysaccharide (LPS, 0.5 mg/kg ip). Circulating and myocardial TNF-α increased at 1 and 2 h, whereas myocardial contractility was depressed at 4 and 6 h. Pretreatment with cycloheximide or dexamethasone abolished the increase in circulating and myocardial TNF-α and preserved myocardial contractile function. Similarly, treatment with TNF binding protein immediately after LPS prevented myocardial depression. We conclude that endogenous TNF-α mediates delayed myocardial depression in endotoxemic rats and that inhibition of TNF-α production or neutralization of TNF-α preserves myocardial contractile function in endotoxemia.


Blood ◽  
1992 ◽  
Vol 80 (1) ◽  
pp. 194-202 ◽  
Author(s):  
E Shacter ◽  
GK Arzadon ◽  
J Williams

Abstract Intraperitoneal (i.p.) injection of a mineral oil such as pristane induces a chronic inflammatory response in mice. This is characterized by a large influx of macrophages and other inflammatory cells into the peritoneal cavity for months after injection of the oil. By using the B9 cell bioassay, it was found that injection of pristane caused a marked and prolonged elevation of interleukin-6 (IL-6) levels in the peritoneal cavities of the mice. IL-6 was undetectable (less than 15 U/mL) in the peritoneal fluids of unprimed mice and during the first week after injecting pristane. From 4 to 20 weeks, the concentration of IL-6 increased to an apparent plateau with concentrations ranging from 200 to 2,000 U/mL. Increasing the dose of pristane did not substantially increase the peritoneal levels of IL-6 established at 20 weeks after pristane treatment. At later times (by day 250), the level decreased to 263 +/- 217 U/mL. However, mice that developed plasma cell tumors around day 300 showed high levels of IL-6 in the ascites fluid (650 to 2,400 U/mL). Serum levels of IL-6 were also elevated in pristane-primed mice but were substantially lower than those found in the peritoneal cavity. Chronic administration of the nonsteroidal anti- inflammatory drug indomethacin decreased the levels of IL-6 by 75% to 80%. Experiments performed in vitro showed that pristane-elicited macrophages secreted low levels of IL-6 constitutively and high levels of IL-6 in the presence of lipopolysaccharide. Both IL-6 and prostaglandin E2 production were inhibited by addition of indomethacin to macrophage cultures in vitro. Treatment of mice with pristane may provide a model system for studying the inflammatory pathways that control IL-6 levels in vivo. The relevance of these results to elucidation of the role of IL-6 in plasma cell tumorigenesis is discussed.


1998 ◽  
Vol 188 (11) ◽  
pp. 1985-1992 ◽  
Author(s):  
Azumi Hamasaki ◽  
Fujiro Sendo ◽  
Keiko Nakayama ◽  
Noriko Ishida ◽  
Izumi Negishi ◽  
...  

To elucidate the role of A1, a new member of the Bcl-2 family of apoptosis regulators active in hematopoietic cell apoptosis, we established mice lacking A1-a, a subtype of the A1 gene in mice (A1-a−/− mice). Spontaneous apoptosis of peripheral blood neutrophils of A1-a−/− mice was enhanced compared with that of either wild-type mice or heterozygous mutants (A1-a+/− mice). Neutrophil apoptosis inhibition induced by lipopolysaccharide treatment in vitro or transendothelial migration in vivo observed in wild-type mice was abolished in both A1-a−/− and A1-a+/− animals. On the other hand, the extent of tumor necrosis factor α–induced acceleration of neutrophil apoptosis did not differ among A1-a−/−, A1-a+/−, and wild-type mice. The descending order of A1 mRNA expression was wild-type, A1-a+/−, and A1-a−/−. Taken together, these results suggest that A1 is involved in inhibition of certain types of neutrophil apoptosis.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Paola Di Benedetto ◽  
Piero Ruscitti ◽  
Onorina Berardicurti ◽  
Noemi Panzera ◽  
Nicolò Grazia ◽  
...  

Abstract Objective During rheumatoid arthritis (RA), the angiogenic processes, occurring with pannus-formation, may be a therapeutic target. JAK/STAT-pathway may play a role and the aim of this work was to investigate the inhibiting role of a JAK-inhibitor, tofacitinib, on the angiogenic mechanisms occurring during RA. Methods After ethical approval, JAK-1, JAK-3, STAT-1, STAT-3 and VEGF expression was evaluated on RA-synovial-tissues. In vitro, endothelial cells (ECs), stimulated with 20 ng/ml of VEGF and/or 1 μM of tofacitinib, were assessed for tube formation, migration and proliferation, by Matrigel, Boyden chamber assay and ki67 gene-expression. In vivo, 32 mice received collagen (collagen-induced arthritis (CIA)) and 32 mice PBS (control). At day 19, CIA and controls mice were divided: 16 mice receiving vehicle and 16 mice receiving tofacitinib. At day 35, the arthritis score, the thickness of paw joints and the serum levels of VEGF and Ang-2 were evaluated. Results The expression of JAK-1, JAK-3, STAT-1, STAT-3 and VEGF in synovial tissue of RA-patients were significantly higher than healthy controls. In vitro, tofacitinib inhibited the ECs ability to form vessels, to proliferate and to migrate. In vivo, administration of tofacitinib prevented the increase of the arthritis score, the paw thickness, the synovial vessels and VEGF and Ang-2 serum-accumulation, when compared to CIA without tofacitinib. Conclusions We explored the anti-angiogenic role of tofacitinib, reporting its ability to inhibit in vitro the angiogenic mechanisms of ECs and in vivo the formation of new synovial vessels, occurring in CIA model. These findings suggest that the therapeutic effect of tofacitinib during RA may be also related to its anti-angiogenic activity.


Endocrinology ◽  
2007 ◽  
Vol 148 (4) ◽  
pp. 1707-1716 ◽  
Author(s):  
Cheng Wang ◽  
Shyamal K. Roy

The role of E2 on primordial follicle formation was examined by treating neonatal hamsters with 1 or 2 μg estradiol cypionate (ECP) at age postnatal d 1 (P1) and P4 or by in vitro culture of embryonic d 15 (E15) ovaries with 1, 5, or 10 ng/ml estradiol-17β (E2). The specificity of E2 action was examined by ICI 182,780. One microgram of ECP maintained serum levels of E2 within the physiological range, significantly reduced apoptosis, and stimulated the formation and development of primordial follicles. In contrast, 2 μg ECP increased serum E2 levels to 400 pg/ml and had significantly less influence on primordial follicle formation. In vivo, ICI 182,780 significantly increased apoptosis and caused a modest reduction in primordial follicle formation. The formation and development of primordial follicles in vitro increased markedly with 1 ng/ml E2, and the effect was blocked by ICI 182,780. Higher doses of E2 had no effect on primordial follicle formation but significantly up-regulated apoptosis, which was blocked by ICI 182,780. CYP19A1 mRNA expression occurred by E13 and increased with the formation of primordial follicles. P4 ovaries synthesized E2 from testosterone, which increased further by FSH. Both testosterone and FSH maintained ovarian CYP19A1 mRNA, but FSH up-regulated the expression. These results suggest that neonatal hamster ovaries produce E2 under FSH control and that E2 action is essential for the survival and differentiation of somatic cells and the oocytes leading to the formation and development of primordial follicles. This supportive action of E2 is lost when hormone levels increase above a threshold.


2010 ◽  
Vol 207 (2) ◽  
pp. 345-352 ◽  
Author(s):  
Daniel P. Sieveking ◽  
Patrick Lim ◽  
Renée W.Y. Chow ◽  
Louise L. Dunn ◽  
Shisan Bao ◽  
...  

Mounting evidence suggests that in men, serum levels of testosterone are negatively correlated to cardiovascular and all-cause mortality. We studied the role of androgens in angiogenesis, a process critical in cardiovascular repair/regeneration, in males and females. Androgen exposure augmented key angiogenic events in vitro. Strikingly, this occurred in male but not female endothelial cells (ECs). Androgen receptor (AR) antagonism or gene knockdown abrogated these effects in male ECs. Overexpression of AR in female ECs conferred androgen sensitivity with respect to angiogenesis. In vivo, castration dramatically reduced neovascularization of Matrigel plugs. Androgen treatment fully reversed this effect in male mice but had no effect in female mice. Furthermore, orchidectomy impaired blood-flow recovery from hindlimb ischemia, a finding rescued by androgen treatment. Our findings suggest that endogenous androgens modulate angiogenesis in a sex-dependent manner, with implications for the role of androgen replacement in men.


Sign in / Sign up

Export Citation Format

Share Document