scholarly journals Personalized medicine in cardio-oncology: the role of induced pluripotent stem cell

2019 ◽  
Vol 115 (5) ◽  
pp. 949-959 ◽  
Author(s):  
Nazish Sayed ◽  
Mohamed Ameen ◽  
Joseph C Wu

Abstract Treatment of cancer has evolved in the last decade with the introduction of new therapies. Despite these successes, the lingering cardiotoxic side-effects from chemotherapy remain a major cause of morbidity and mortality in cancer survivors. These effects can develop acutely during treatment, or even years later. Although many risk factors can be identified prior to beginning therapy, unexpected toxicity still occurs, often with lasting consequences. Specifically, cardiotoxicity results in cardiac cell death, eventually leading to cardiomyopathy and heart failure. Certain risk factors may predispose an individual to experiencing adverse cardiovascular effects, and when unexpected cardiotoxicity occurs, it is generally managed with supportive care. Animal models of chemotherapy-induced cardiotoxicity have provided some mechanistic insights, but the precise mechanisms by which these drugs affect the heart remains unknown. Moreover, the genetic rationale as to why some patients are more susceptible to developing cardiotoxicity has yet to be determined. Many genome-wide association studies have identified genomic variants that could be associated with chemotherapy-induced cardiotoxicity, but the lack of validation has made these studies more speculative rather than definitive. With the advent of human induced pluripotent stem cell (iPSC) technology, researchers not only have the opportunity to model human diseases, but also to screen drugs for their efficacy and toxicity using human cell models. Furthermore, it allows us to conduct validation studies to confirm the role of genomic variants in human diseases. In this review, we discuss the role of iPSCs in modelling chemotherapy-induced cardiotoxicity.

2017 ◽  
Vol 37 (11) ◽  
pp. 2000-2006 ◽  
Author(s):  
Hanrui Zhang ◽  
Muredach P. Reilly

Despite a substantial appreciation for the critical role of macrophages in cardiometabolic diseases, understanding of human macrophage biology has been hampered by the lack of reliable and scalable models for cellular and genetic studies. Human induced pluripotent stem cell (iPSC)–derived macrophages (IPSDM), as an unlimited source of subject genotype-specific cells, will undoubtedly play an important role in advancing our understanding of the role of macrophages in human diseases. In this review, we summarize current literature in the differentiation and characterization of IPSDM at phenotypic, functional, and transcriptomic levels. We emphasize the progress in differentiating iPSC to tissue resident macrophages, and in understanding the ontogeny of in vitro differentiated IPSDM that resembles primitive hematopoiesis, rather than adult definitive hematopoiesis. We review the application of IPSDM in modeling both Mendelian genetic disorders and host–pathogen interactions. Finally, we highlighted the potential areas of research using IPSDM in functional validation of coronary artery disease loci in genome-wide association studies, functional genomic analyses, drug testing, and cell therapeutics in cardiovascular diseases.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Sherri M Biendarra-tiegs ◽  
Sergey Yechikov ◽  
Laura Houshmand ◽  
R. E Gonzalez ◽  
Zhi Hong Lu ◽  
...  

Atrial fibrillation (AF) poses a notable healthcare burden due to a high incidence in the increasing population over age 65 and limitations of current treatment approaches. One challenge to effectively treat AF is patient-to-patient heterogeneity in the underlying mechanisms of disease. Therefore, a better understanding of AF pathogenesis and more personalized approaches to therapy could reduce risk of side effects and improve therapeutic efficacy. Genome wide association studies (GWAS) have revealed several candidate genes for AF including TBX5 , which encodes for a transcription factor involved in heart development. While work in animal models suggests that loss of TBX5 promotes atrial arrythmias, experimental evidence in human cells is lacking. We created an in vitro model of human atrial conduction using day 60+ induced pluripotent stem cell-derived atrial-like cardiomyocytes (iPSC-aCMs) differentiated from three established healthy iPSC lines. Over 90% atrial-like purity (out of 350+ alpha-actinin positive cardiomyocytes) could be achieved based on MLC2v-/MLC2a+ immunofluorescent staining. TBX5 knockdown via esiRNA resulted in downregulation of genes related to conduction velocity ( GJA5 and SCN5A ), consistent with an enhanced risk of AF. Single cell optical electrophysiology demonstrated slightly reduced action potential amplitude and upstroke velocity for TBX5 knockdown cells versus GFP esiRNA controls, suggesting a functional effect of SCN5A downregulation. Additionally, microelectrode array studies have revealed a trend towards slowed conduction velocity with TBX5 knockdown compared to GFP esiRNA controls (13.1±3.0 cm/s vs 17.0±3.8 cm/s respectively). By further investigating the functional effects of modulating transcription factors such as TBX5 in iPSC-aCMs, our results provide enhanced insight into the regulation of atrial conduction and identify potential AF-related pathways for therapeutic targeting.


2022 ◽  
Author(s):  
Martin Broberg ◽  
Minna Ampuja ◽  
Samuel Jones ◽  
Tiina Ojala ◽  
Otto Rahkonen ◽  
...  

AbstractCongenital heart defects (CHD) are structural defects of the heart affecting approximately 1% of newborns. CHDs exhibit a complex inheritance pattern. While genetic factors are known to play an important role in the development of CHD, relatively few variants have been discovered so far and very few genome-wide association studies (GWAS) have been conducted. We performed a GWAS of general CHD and five CHD subgroups in FinnGen followed by functional fine-mapping through eQTL analysis in the GTEx database, and target validation in human induced pluripotent stem cell - derived cardiomyocytes (hiPS-CM) from CHD patients. We discovered that the MYL4-KPNB1 locus (rs11570508, beta = 0.24, P = 1.2×10−11) was associated with the general CHD group. An additional four variants were significantly associated with the different CHD subgroups. Two of these, rs1342740627 associated with left ventricular outflow tract obstruction defects and rs1293973611 associated with septal defects, were Finnish population enriched. The variant rs11570508 associated with the expression of MYL4 (normalized expression score (NES) = 0.1, P = 0.0017, in the atrial appendage of the heart) and KPNB1 (NES = -0.037, P = 0.039, in the left ventricle of the heart). Furthermore, lower expression levels of both genes were observed in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) from CHD patients compared to healthy controls. Together, the results demonstrate KPNB1 and MYL4 as in a potential genetic risk loci associated with the development of CHD.


2020 ◽  
Vol 1 ◽  
pp. 254
Author(s):  
Katherine E. Hekman ◽  
Kyle Koss ◽  
David Z. Ivancic ◽  
Congcong He ◽  
Jason A. Wertheim

2018 ◽  
Vol 360 ◽  
pp. 88-98 ◽  
Author(s):  
Liang Guo ◽  
Sandy Eldridge ◽  
Michael Furniss ◽  
Jodie Mussio ◽  
Myrtle Davis

2019 ◽  
Vol 3 (s1) ◽  
pp. 26-26
Author(s):  
Maria Giovanna Trivieri ◽  
Francesca Stillitano ◽  
Delaine Ceholski ◽  
Irene Turnbull ◽  
Kevin Costa ◽  
...  

OBJECTIVES/SPECIFIC AIMS: To study the biology of Phosholamban (PLN) in a human relevant model. METHODS/STUDY POPULATION: State of the art stem-cell technologies using iPSC-CMs derived from carriers of a lethal PLN mutation. RESULTS/ANTICIPATED RESULTS: Our preliminary data demonstrate that this particular PLN mutation (L39) results in reduced expression and mis-localization of PLN as well as increased incidence of early after depolarization in isolated iPSC-CMs. DISCUSSION/SIGNIFICANCE OF IMPACT: Phospholamban (PLN) is a critical regulator of Ca++ homeostasis yet many uncertainties still remain regarding its role in humans. Our study will provide unique insights into the pathophysiology of this protein in HF.


2019 ◽  
Vol 20 (16) ◽  
pp. 3862 ◽  
Author(s):  
Mika Suga ◽  
Takayuki Kondo ◽  
Haruhisa Inoue

Astrocytes play vital roles in neurological disorders. The use of human induced pluripotent stem cell (iPSC)-derived astrocytes provides a chance to explore the contributions of astrocytes in human diseases. Here we review human iPSC-based models for neurological disorders associated with human astrocytes and discuss the points of each model.


Stem Cells ◽  
2013 ◽  
Vol 31 (4) ◽  
pp. 682-692 ◽  
Author(s):  
Yun-Shen Chan ◽  
Jonathan Göke ◽  
Xinyi Lu ◽  
Nandini Venkatesan ◽  
Bo Feng ◽  
...  

2014 ◽  
Vol 141 (2) ◽  
pp. 547-559 ◽  
Author(s):  
Sandy Eldridge ◽  
Liang Guo ◽  
Jodie Mussio ◽  
Mike Furniss ◽  
John Hamre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document