scholarly journals Delineating the molecular and histological events that govern right ventricular recovery using a novel mouse model of pulmonary artery de-banding

2019 ◽  
Vol 116 (10) ◽  
pp. 1700-1709 ◽  
Author(s):  
Mario Boehm ◽  
Xuefei Tian ◽  
Yuqiang Mao ◽  
Kenzo Ichimura ◽  
Melanie J Dufva ◽  
...  

Abstract Aims The temporal sequence of events underlying functional right ventricular (RV) recovery after improvement of pulmonary hypertension-associated pressure overload is unknown. We sought to establish a novel mouse model of gradual RV recovery from pressure overload and use it to delineate RV reverse-remodelling events. Methods and results Surgical pulmonary artery banding (PAB) around a 26-G needle induced RV dysfunction with increased RV pressures, reduced exercise capacity and caused liver congestion, hypertrophic, fibrotic, and vascular myocardial remodelling within 5 weeks of chronic RV pressure overload in mice. Gradual reduction of the afterload burden through PA band absorption (de-PAB)—after RV dysfunction and structural remodelling were established—initiated recovery of RV function (cardiac output and exercise capacity) along with rapid normalization in RV hypertrophy (RV/left ventricular + S and cardiomyocyte area) and RV pressures (right ventricular systolic pressure). RV fibrotic (collagen, elastic fibres, and vimentin+ fibroblasts) and vascular (capillary density) remodelling were equally reversible; however, reversal occurred at a later timepoint after de-PAB, when RV function was already completely restored. Microarray gene expression (ClariomS, Thermo Fisher Scientific, Waltham, MA, USA) along with gene ontology analyses in RV tissues revealed growth factors, immune modulators, and apoptosis mediators as major cellular components underlying functional RV recovery. Conclusion We established a novel gradual de-PAB mouse model and used it to demonstrate that established pulmonary hypertension-associated RV dysfunction is fully reversible. Mechanistically, we link functional RV improvement to hypertrophic normalization that precedes fibrotic and vascular reverse-remodelling events.

2020 ◽  
pp. 1901192
Author(s):  
Stanislav Keranov ◽  
Oliver Dörr ◽  
Leili Jafari ◽  
Christian Troidl ◽  
Christoph Liebetrau ◽  
...  

The aim of our study was to analyse the protein expression of cartilage intermediate layer protein 1 (CILP1) in a mouse model of right ventricular (RV) pressure overload and to evaluate CILP1 as a biomarker of cardiac remodelling and maladaptive RV function in patients with pulmonary hypertension (PH).Pulmonary artery banding was performed in 14 mice; another 9 mice underwent sham surgery. CILP1 protein expression was analysed in all hearts by western blotting and immunostaining. CILP1 serum concentrations were measured in 161 patients (97 with adaptive and maladaptive RV pressure overload caused by PH; 25 with left ventricular (LV) hypertrophy; 20 with dilative cardiomyopathy (DCM); 19 controls without LV or RV abnormalities)In mice, the amount of RV CILP1 was markedly higher after banding than after sham. Control patients had lower CILP1 serum levels than all other groups (p<0.001). CILP1 concentrations were higher in PH patients with maladaptive RV function than those with adaptive RV function (p<0.001), LV pressure overload (p<0.001), and DCM (p=0.003). CILP1 showed good predictive power for maladaptive RV in ROC analysis (AUC 0.79). There was no significant difference between the AUCs of CILP1 and NT-pro-BNP (AUC 0.82). High CILP1 (≥cut-off value for maladaptive RV of 4373 pg·mL−1) was associated with lower TAPSE/PASP ratios (p<0.001) and higher NT-pro-BNP levels (p<0.001).CILP1 is a novel biomarker of RV and LV pathological remodelling that is associated with RV maladaptation and ventriculoarterial uncoupling in patients with PH.


Author(s):  
Danial Sharifi Kia ◽  
Evan Benza ◽  
Timothy N. Bachman ◽  
Claire Tushak ◽  
Kang Kim ◽  
...  

Background Pulmonary hypertension ( PH ) results in increased right ventricular ( RV ) afterload and ventricular remodeling. Sacubitril/valsartan (sac/val) is a dual acting drug, composed of the neprilysin inhibitor sacubitril and the angiotensin receptor blocker valsartan, that has shown promising outcomes in reducing the risk of death and hospitalization for chronic systolic left ventricular heart failure. In this study, we aimed to examine if angiotensin receptor‐neprilysin inhibition using sac/val attenuates RV remodeling in PH . Methods and Results RV pressure overload was induced in Sprague–Dawley rats via banding the main pulmonary artery. Three different cohorts of controls, placebo‐treated PH , and sac/val‐treated PH were studied in a 21‐day treatment window. Terminal invasive hemodynamic measurements, quantitative histological analysis, biaxial mechanical testing, and constitutive modeling were employed to conduct a multiscale analysis on the effects of sac/val on RV remodeling in PH . Sac/val treatment decreased RV maximum pressures (29% improvement, P =0.002), improved RV contractile (30%, P =0.012) and relaxation (29%, P =0.043) functions, reduced RV afterload (35% improvement, P =0.016), and prevented RV ‐ pulmonary artery uncoupling. Furthermore, sac/val attenuated RV hypertrophy (16% improvement, P =0.006) and prevented transmural reorientation of RV collagen and myofibers ( P =0.011). The combined natriuresis and vasodilation resulting from sac/val led to improved RV biomechanical properties and prevented increased myofiber stiffness in PH (61% improvement, P =0.032). Conclusions Sac/val may prevent maladaptive RV remodeling in a pressure overload model via amelioration of RV pressure rise, hypertrophy, collagen, and myofiber reorientation as well as tissue stiffening both at the tissue and myofiber level.


2021 ◽  
Author(s):  
Janus Adler Hyldebrandt ◽  
Nikolaj Bøgh ◽  
Camilla Omann Christensen ◽  
Peter Agger

Abstract Background: Pulmonary hypertension is a significant risk factor in patients undergoing surgery. The combined effects of general anaesthesia and positive pressure ventilation can aggravate this condition and cause increased pulmonary blood pressures, reduced systemic blood pressures and ventricular contractility. Although perioperative use of inotropic support or vasopressors is almost mandatory for these patients, preference is disputed. In this study, we investigated the effects of norepinephrine and dobutamine and their ability to improve the arterio-ventricular relationship and haemodynamics in pigs suffering from chronic pulmonary hypertension.Method: Pulmonary hypertension was induced in five pigs by banding the pulmonary artery at 2–3 weeks of age. Six pigs served as controls. After 16 weeks of pulmonary artery banding, the animals were re-examined under general anaesthesia using biventricular conductance catheters and a pulmonary artery catheter. After baseline measurements, the animals were exposed to both norepinephrine and dobutamine infusions in incremental doses, with a stabilizing period in between the infusions. The hypothesis of differences between norepinephrine and dobutamine with incremental doses was tested using repeated two-way ANOVA and Bonferroni multiple comparisons post-test. Results: At baseline, pulmonary artery banded animals had increased right ventricular pressure (+39%, p=0.04), lower cardiac index (-23% p=0.04), lower systolic blood pressure (-13%, p=0.02) and reduced left ventricular end-diastolic volume (-33%, p=0.02). When incremental doses of norepinephrine and dobutamine were administered, the right ventricular arterio-ventricular coupling was improved only by dobutamine (p<0.05). Norepinephrine increased both left ventricular end-diastolic volume and left ventricular contractility to a greater extent (p<0.05) in pulmonary artery banded animals. While the cardiac index was improved equally by norepinephrine and dobutamine treatments in pulmonary artery banded animals, norepinephrine had a significantly greater effect on mean arterial pressure (p<0.05) and diastolic arterial pressure (p<0.05).Conclusion: While norepinephrine and dobutamine improved cardiac index equally, it was obtained in different manners. Dobutamine significantly improved the right ventricular function and the arterio-ventricular coupling. Norepinephrine increased systemic resistance, thereby improving arterial pressures and left ventricular systolic function by maintaining left ventricular end-diastolic volume.


2021 ◽  
Author(s):  
Kim Connelly ◽  
Ellen Wu ◽  
Aylin Visram ◽  
Mark K. Friedberg ◽  
Sri Nagarjun Batchu ◽  
...  

Abstract Background— Sodium glucose linked transporter 2 (SGLT2) inhibition not only reduces morbidity and mortality in patients with diagnosed heart failure but also prevents the development of heart failure hospitalization in those at risk. While studies to date have focused on the role of SGLT2 inhibition in left ventricular failure, whether this drug class might be similarly efficacious in the treatment and prevention of right heart failure has not been unexplored. Hypothesis: We hypothesized that SGLT2 inhibition would reduce the structural, functional and molecular responses to pressure overload of the right ventricle. Methods: Thirteen-week-old Fischer F344 rats underwent pulmonary artery banding (PAB) or sham surgery prior to being randomized to receive either the SGLT2 inhibitor: dapagliflozin (0.5mg/kg/day) or vehicle by oral gavage. After six weeks of treatment, animals underwent transthoracic echocardiography and invasive hemodynamic studies. Animals were then terminated, and their hearts harvested for structural and molecular analyses. Results: PAB induced features consistent with a compensatory response to increased right ventricular (RV) afterload with elevated mass, end systolic pressure, collagen content and alteration in calcium handling protein expression (all p<0.05 when compared to sham + vehicle). Dapagliflozin reduced RV mass, including both wet and dry weight as well as normalizing the protein expression of SERCA 2A, AMPkinase and LC3I/II ratio expression (all p<0.05). Significance: Dapagliflozin reduces the structural, functional, and molecular manifestations of right ventricular pressure overload. Whether amelioration of these early changes in the RV may ultimately lead to a reduction in RV failure remains to be determined.


2020 ◽  
Vol 9 (21) ◽  
Author(s):  
Hidenori Moriyama ◽  
Takashi Kawakami ◽  
Masaharu Kataoka ◽  
Takahiro Hiraide ◽  
Mai Kimura ◽  
...  

Background Right ventricular (RV) dysfunction is a prognostic factor for cardiovascular disease. However, its mechanism and pathophysiology remain unknown. We investigated RV function using RV‐specific 3‐dimensional (3D)‐speckle‐tracking echocardiography (STE) in patients with chronic thromboembolic pulmonary hypertension. We also assessed regional wall motion abnormalities in the RV and chronological changes during balloon pulmonary angioplasty (BPA). Methods and Results Twenty‐nine patients with chronic thromboembolic pulmonary hypertension who underwent BPA were enrolled and underwent right heart catheterization and echocardiography before, immediately after, and 6 months after BPA. Echocardiographic assessment of RV function included both 2‐dimensional‐STE and RV‐specific 3D‐STE. Before BPA, global area change ratio measured by 3D‐STE was significantly associated with invasively measured mean pulmonary artery pressure and pulmonary vascular resistance ( r =0.671 and r =0.700, respectively). Dividing the RV into the inlet, apex, and outlet, inlet area change ratio showed strong correlation with mean pulmonary artery pressure and pulmonary vascular resistance before BPA ( r =0.573 and r =0.666, respectively). Only outlet area change ratio was significantly correlated with troponin T values at 6 months after BPA ( r =0.470), and its improvement after BPA was delayed compared with the inlet and apex regions. Patients with poor outlet area change ratio were associated with a delay in RV reverse remodeling after treatment. Conclusions RV‐specific 3D‐STE analysis revealed that 3D RV parameters were novel useful indicators for assessing RV function and hemodynamics in pulmonary hypertension and that each regional RV portion presents a unique response to hemodynamic changes during treatment, implicating that evaluation of RV regional functions might lead to a new guide for treatment strategies.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M Kanda ◽  
T Nagai ◽  
N Kondou ◽  
K Tateno ◽  
M Hirose ◽  
...  

Abstract Introduction and purpose The number of patients with right heart failure due to pulmonary hypertension has been increasing. Although several drugs have reportedly improved pulmonary hypertension, no treatments have been established for decompensated right heart failure. The heart has an innate ability to regenerate, and cardiac stem or progenitor cells (e.g., side population [SP] cells) have been reported to contribute to the regeneration process. However, their contribution to right ventricular pressure overload has not been clarified. Here, this regeneration process was evaluated using a genetic fate-mapping model. Methods and results We used Cre-LacZ mice, in which more than 99.9% of the cardiomyocytes in the left ventricular field were positive for 5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-gal) staining immediately after tamoxifen injection. Then, we performed either a pulmonary binding (PAB) or sham operation on the main pulmonary tract. In the PAB-treated mice, the right ventricular cavity was significantly enlarged (right-to-left ventricular [RV/LV] ratio, 0.24±0.04 in the sham group and 0.68±0.04 in the PAB group). Increased peak flow velocity in the PAB group (1021±80 vs 1351±62 mm/sec) was confirmed by echocardiography. One month after the PAB, the PAB-treated mice had more X-gal-negative (newly generated) cells than the sham mice (94.8±34.2 cells/mm2 vs 23.1±10.5 cells/mm2; p<0.01). The regeneration was biased in the RV free wall (RV free wall, 225.5±198.7 cells/mm2; septal area, 88.9±56.5/mm2; LV lateral area, 46.8±22.0/mm2; p<0.05). To examine the direct effects of PAB on the cardiac progenitor cells, bromodeoxyuridine was administered to the mice daily until 1 week after the PAB operation. Then, the hearts were isolated and SP cells were harvested. The SP cell population increased from 0.65±0.23% in the sham mice to 1.87% ± 1.18% in the PAB-treated mice. Immunostaining analysis revealed a significant increase in the number of BrdU-positive SP cells, from 11.6±2.0% to 44.0±18%, therefore showing SP cell proliferation. Conclusions Pulmonary pressure overload stimulated cardiac stem or progenitor cell-derived regeneration with a RV bias, and SP cell proliferation may partially contribute to this process. Acknowledgement/Funding JSPS KAKENHI Grant Number JP 17K17636, GSK Japan Research Grant 2016


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Thomas Hansen ◽  
Kristen Bubb ◽  
Gemma Figtree

Introduction: Accurate measurements of right ventricular (RV) function are critical for studying novel therapies impacting the heart and pulmonary circulation. Until now, assessment in mouse models has relied on invasive measures. Improvements in mouse echocardiography may facilitate application of measures recently validated in humans, including tricuspid annular plane systolic excursion (TAPSE) and RV-S’ (systolic excursion velocity), to allow non-invasive assessment of RV function. Aims: To apply and validate TAPSE and RV-S’ using high-resolution echocardiography for the measurement of RV function in a mouse model of pulmonary hypertension (PH). Methods: Echocardiography was performed on mice 3 weeks after induction of PH using inhaled bleomycin or saline control. PAT, TAPSE and RV-S’ were recorded in mice using a 55-mHz transducer (Visualsonics, Vevo3100). Invasive measurements of right ventricular systolic pressure (RVSP) were obtained via catheterisation of the internal jugular vein, prior to culling. Results: RVSP was significantly elevated in bleomycin-treated mice ( 33.41±0.8mmHg n=10) compared to controls ( 25.66±0.9mmHg n=11; p<0.0001). Similarly, RV hypertrophy was observed in bleomycin mice [RV:body weight 1.156±0.03g/kg n=11] compared with control ( 0.968±0.02g/kg n=12; p=0.0002). TAPSE was sensitive to these differences, being significantly reduced in bleomycin mice ( 0.5739±0.020mm n=8) compared with control ( 0.7387±0.033mm n=10; p=0.0012), and correlated significantly with invasive RVSP (r 2 =0.7218; p<0.0001). RV-S’ was also reduced in bleomycin mice (18.14±0.98mm/s n=7) compared with control (25.38±1.24mm/s n=8; p=0.0006) and correlated strongly with RVSP (r 2 =0.6378; p=0.0011). The correlation of both TAPSE and RV-S’ with RVSP compared favourably to the previously used surrogate measure of RVSP in mice, PAT (r 2 =0.5278; p=0.0002). Conclusions: TAPSE and RV-S’ can be applied in mouse echocardiography, and are sensitive, non-invasive measures of PH and RV dysfunction, comparing well with gold-standard invasive right ventricular systolic pressures. This may benefit the power of future preclinical studies of novel therapies in pulmonary hypertension and RV dysfunction.


2019 ◽  
Vol 317 (4) ◽  
pp. H840-H850
Author(s):  
Zongye Cai ◽  
Richard W. B. van Duin ◽  
Kelly Stam ◽  
André Uitterdijk ◽  
Jolanda van der Velden ◽  
...  

Assessing right ventricular (RV) functional reserve is important for determining clinical status and prognosis in patients with pulmonary hypertension (PH). In this study, we aimed to establish RV oxygen (O2) delivery as a determinant for RV functional reserve during exercise in swine with chronic PH. Chronic PH was induced by pulmonary vein banding (PVB), with sham operation serving as control. RV function and RV O2 delivery were measured over time in chronically instrumented swine, up to 12 wk after PVB at rest and during exercise. At rest, RV afterload (pulmonary artery pressure and arterial elastance) and contractility ( Ees and dP/d tmax) were higher in PH compared with control with preserved cardiac index and RV O2 delivery. However, RV functional reserve, as measured by the exercise-induced relative change (Δ) in cardiac index, dP/d tmax, and end-systolic elastance ( Ees), was decreased in PH, and RV pulmonary arterial coupling was lower both at rest and during exercise in PH. Furthermore, the increase in RV O2 delivery was attenuated in PH during exercise principally due to a lower systolic coronary blood flow in combination with an attenuated increase in aorta pressure while arterial O2 content was not significantly altered in PH. Moreover, RV O2 delivery reserve correlated with RV functional reserve, Δcardiac index ( r2 = 0.85), ΔdP/d tmax ( r2 = 0.49), and Δ Ees ( r2 = 0.70), all P < 0.05. The inability to sufficiently increase RV O2 supply to meet the increased O2 demand during exercise is principally due to the reduced RV perfusion relative to healthy control values and likely contributes to impaired RV contractile function and thereby to the limited exercise capacity that is commonly observed in patients with PH. NEW & NOTEWORTHY Impaired right ventricular (RV) O2 delivery reserve is associated with reduced RV functional reserve during exercise in a swine model of pulmonary hypertension (PH) induced by pulmonary vein banding. Our data suggest that RV function and exercise capacity might be improved by improving RV O2 delivery.


Sign in / Sign up

Export Citation Format

Share Document