scholarly journals A high-quality chromosome-level genome of wild Rosa rugosa

DNA Research ◽  
2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Fengqi Zang ◽  
Yan Ma ◽  
Xiaolong Tu ◽  
Ping Huang ◽  
Qichao Wu ◽  
...  

Abstract Rosa rugosa is an important shrub with economic, ecological, and pharmaceutical value. A high-quality chromosome-scale genome for R. rugosa sequences was assembled using PacBio and Hi-C technologies. The final assembly genome sequences size was about 407.1 Mb, the contig N50 size was 2.85 Mb, and the scaffold N50 size was 56.6 Mb. More than 98% of the assembled genome sequences were anchored to seven pseudochromosomes (402.9 Mb). The genome contained 37,512 protein-coding genes, with 37,016 genes (98.68%) that were functionally annotated, and 206.67 Mb (50.76%) of the assembled sequences are repetitive sequences. Phylogenetic analyses indicated that R. rugosa diverged from Rosa chinensis ∼6.6 million years ago, and no lineage-specific whole-genome duplication event occurred after divergence from R. chinensis. Chromosome synteny analysis demonstrated highly conserved synteny between R. rugosa and R. chinensis, between R. rugosa and Prunus persica as well. Comparative genome and transcriptome analysis revealed genes related to colour, scent, and environment adaptation. The chromosome-level reference genome provides important genomic resources for molecular-assisted breeding and horticultural comparative genomics research.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jielong Zhou ◽  
Peifu Wu ◽  
Zhongping Xiong ◽  
Naiyong Liu ◽  
Ning Zhao ◽  
...  

A high-quality genome is of significant value when seeking to control forest pests such as Dendrolimus kikuchii, a destructive member of the order Lepidoptera that is widespread in China. Herein, a high quality, chromosome-level reference genome for D. kikuchii based on Nanopore, Pacbio HiFi sequencing and the Hi-C capture system is presented. Overall, a final genome assembly of 705.51 Mb with contig and scaffold N50 values of 20.89 and 24.73 Mb, respectively, was obtained. Of these contigs, 95.89% had unique locations on 29 chromosomes. In silico analysis revealed that the genome contained 15,323 protein-coding genes and 63.44% repetitive sequences. Phylogenetic analyses indicated that D. kikuchii may diverged from the common ancestor of Thaumetopoea. Pityocampa, Thaumetopoea ni, Heliothis virescens, Hyphantria armigera, Spodoptera frugiperda, and Spodoptera litura approximately 122.05 million years ago. Many gene families were expanded in the D. kikuchii genome, particularly those of the Toll and IMD signaling pathway, which included 10 genes in peptidoglycan recognition protein, 19 genes in MODSP, and 11 genes in Toll. The findings from this study will help to elucidate the mechanisms involved in protection of D. kikuchii against foreign substances and pathogens, and may highlight a potential channel to control this pest.


GigaScience ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Shubo Jin ◽  
Chao Bian ◽  
Sufei Jiang ◽  
Kai Han ◽  
Yiwei Xiong ◽  
...  

Abstract Background The oriental river prawn, Macrobrachium nipponense, is an economically important shrimp in China. Male prawns have higher commercial value than females because the former grow faster and reach larger sizes. It is therefore important to reveal sex-differentiation and development mechanisms of the oriental river prawn to enable genetic improvement. Results We sequenced 293.3 Gb of raw Illumina short reads and 405.7 Gb of Pacific Biosciences long reads. The final whole-genome assembly of the Oriental river prawn was ∼4.5 Gb in size, with predictions of 44,086 protein-coding genes. A total of 49 chromosomes were determined, with an anchor ratio of 94.7% and a scaffold N50 of 86.8 Mb. A whole-genome duplication event was deduced to have happened 109.8 million years ago. By integration of genome and transcriptome data, 21 genes were predicted as sex-related candidate genes. Conclusion The first high-quality chromosome-level genome assembly of the oriental river prawn was obtained. These genomic data, along with transcriptome sequences, are essential for understanding sex-differentiation and development mechanisms in the oriental river prawn, as well as providing genetic resources for in-depth studies on developmental and evolutionary biology in arthropods.


GigaScience ◽  
2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Zheng Fan ◽  
Tao Yuan ◽  
Piao Liu ◽  
Lu-Yu Wang ◽  
Jian-Feng Jin ◽  
...  

Abstract Background The spider Trichonephila antipodiana (Araneidae), commonly known as the batik golden web spider, preys on arthropods with body sizes ranging from ∼2 mm in length to insects larger than itself (>20‒50 mm), indicating its polyphagy and strong dietary detoxification abilities. Although it has been reported that an ancient whole-genome duplication event occurred in spiders, lack of a high-quality genome has limited characterization of this event. Results We present a chromosome-level T. antipodiana genome constructed on the basis of PacBio and Hi-C sequencing. The assembled genome is 2.29 Gb in size with a scaffold N50 of 172.89 Mb. Hi-C scaffolding assigned 98.5% of the bases to 13 pseudo-chromosomes, and BUSCO completeness analysis revealed that the assembly included 94.8% of the complete arthropod universal single-copy orthologs (n = 1,066). Repetitive elements account for 59.21% of the genome. We predicted 19,001 protein-coding genes, of which 96.78% were supported by transcriptome-based evidence and 96.32% matched protein records in the UniProt database. The genome also shows substantial expansions in several detoxification-associated gene families, including cytochrome P450 mono-oxygenases, carboxyl/cholinesterases, glutathione-S-transferases, and ATP-binding cassette transporters, reflecting the possible genomic basis of polyphagy. Further analysis of the T. antipodiana genome architecture reveals an ancient whole-genome duplication event, based on 2 lines of evidence: (i) large-scale duplications from inter-chromosome synteny analysis and (ii) duplicated clusters of Hox genes. Conclusions The high-quality T. antipodiana genome represents a valuable resource for spider research and provides insights into this species’ adaptation to the environment.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Yun Li ◽  
Hairong Wei ◽  
Jun Yang ◽  
Kang Du ◽  
Jiang Li ◽  
...  

Abstract We report the acquisition of a high-quality haploid chromosome-scale genome assembly for the first time in a tree species, Eucommia ulmoides, which is known for its rubber biosynthesis and medicinal applications. The assembly was obtained by applying PacBio and Hi–C technologies to a haploid that we specifically generated. Compared to the initial genome release, this one has significantly improved assembly quality. The scaffold N50 (53.15 MB) increased 28-fold, and the repetitive sequence content (520 Mb) increased by 158.24 Mb, whereas the number of gaps decreased from 104,772 to 128. A total of 92.87% of the 26,001 predicted protein-coding genes identified with multiple strategies were anchored to the 17 chromosomes. A new whole-genome duplication event was superimposed on the earlier γ paleohexaploidization event, and the expansion of long terminal repeats contributed greatly to the evolution of the genome. The more primitive rubber biosynthesis of this species, as opposed to that in Hevea brasiliensis, relies on the methylerythritol-phosphate pathway rather than the mevalonate pathway to synthesize isoprenyl diphosphate, as the MEP pathway operates predominantly in trans-polyisoprene-containing leaves and central peels. Chlorogenic acid biosynthesis pathway enzymes were preferentially expressed in leaves rather than in bark. This assembly with higher sequence contiguity can foster not only studies on genome structure and evolution, gene mapping, epigenetic analysis and functional genomics but also efforts to improve E. ulmoides for industrial and medical uses through genetic engineering.


Author(s):  
Teng Weiming ◽  
Xie Xi ◽  
Hongtao Nie ◽  
Yamin Sun ◽  
Liu Xiangfeng ◽  
...  

Ark shells are commercially important clam species that inhabit in muddy sediments of shallow coasts in East Asia. For a long time, the lack of genome resources has hindered scientific research of ark shells. Here, we reported a high-quality chromosome-level genome assembly of Scapharca kagoshimensis, with an aim to unravel the molecular basis of heme biosynthesis, and develop genomic resources for genetic breeding and population genetics in ark shells. Nineteen scaffolds corresponding to 19 chromosomes were constructed from 938 contigs (contig N50=2.01 Mb) to produce a final high-quality assembly with a total length of 1.11 Gb and scaffold N50 around 60.64 Mb. The genome assembly represents 93.4% completeness via matching 303 eukaryota core conserved genes. A total of 24,908 protein-coding genes were predicted and 24,551 genes (98.56%) of which were functionally annotated. The enrichment analyses suggested that genes in heme biosynthesis pathways were expanded and positive selection of the hemoglobin genes was also found in the genome of S. kagoshimensis, which gives important insights into the molecular mechanisms and evolution of the heme biosynthesis in mollusca. The valuable genome assembly of S. kagoshimensis would provide a solid foundation for investigating the molecular mechanisms that underlie the diverse biological functions and evolutionary adaptations of S. kagoshimensis.


2017 ◽  
Author(s):  
Hanghui Kong ◽  
Wanzhen Liu ◽  
Gang Yao ◽  
Wei Gong

The herbal medicinal genus Aconitum L., belonging to the Ranunculaceae family, represents the earliest diverging lineage within the eudicots. It currently comprises of two subgenera, A. subgenus Lycoctonum and A. subg. Aconitum. The complete chloroplast (cp) genome sequences were characterized in three species: A. angustius, A. finetianum, and A. sinomontanum in subg. Lycoctonum and compared to other Aconitum species to clarify their phylogenetic relationship and provide molecular information for utilization of Aconitum species particularly in Eastern Asia. The length of the chloroplast genome sequences were 156,109 bp in A. angustius, 155,625 bp in A. finetianum and 157,215 bp in A. sinomontanum, with each species possessing 126 genes with 84 protein coding genes (PCGs). While genomic rearrangements were absent, structural variation was detected in the LSC/IR/SSC boundaries. Five pseudogenes were identified, among which Ψrps19 and Ψycf1 were in the LSC/IR/SSC boundaries, Ψrps16 and ΨinfA in the LSC region, and Ψycf15 in the IRb region. The nucleotide variability (Pi) of Aconitum was estimated to be 0.00549, with comparably higher variations in the LSC and SSC than the IR regions. Eight intergenic regions were revealed to be highly variable and a total of 58 – 62 simple sequence repeats (SSRs) were detected in all three species. More than 80% of SSRs were present in the LSC region. Altogether, 64.41% and 46.81% of SSRs are mononucleotides in subg. Lycoctonum and subg. Aconitum, respectively, while a higher percentage of di-, tri-, tetra-, and penta- SSRs were present in subg. Aconitum. Most species of subg. Aconitum in Eastern Asia were first used for phylogenetic analyses. The availability of the complete cp genome sequences of these species in subg. Lycoctonum will benefit future phylogenetic analyses and aid in germplasm utilization in Aconitum species.


Author(s):  
Liang Xu ◽  
Shengnan Li ◽  
Yanyun Yang ◽  
Yanping Xing ◽  
Zhongren Zhang ◽  
...  

Arctium lappa has a long medicinal and edible history with great economic importance. We combined Illumina and PacBio sequences to generate the first high-quality chromosome-level draft genome of A. lappa. The assembled genome is approximately 1.79 Gb with a N50 contig size of 6.88 Mb. Approximately 1.70 Gb (95.4%) of the contig sequences were anchored onto 18 chromosomes using Hi-C data; the scaffold N50 was improved to be 91.64 Mb. Furthermore, we obtained 1.12 Gb (68.46%) of repetitive sequences and 32,771 protein-coding genes; 616 positively selected candidate genes were identified. Additionally, we compared the transcriptomes of A. lappa roots at three different developmental stages and identified 8,943 differentially expressed genes (DEGs) in these tissues. Among candidate genes related to lignan biosynthesis, the following were found to be highly correlated with the accumulation of arctiin: 4-coumarate-CoA ligase (4CL), dirigent protein (DIR), and hydroxycinnamoyl transferase (HCT). These data can be utilized to identify genes related to A. lappa quality or provide a basis for molecular identification and comparative genomics among related species.


2019 ◽  
Author(s):  
Xiaoyun Huang ◽  
Yue Song ◽  
Suyu Zhang ◽  
A Yunga ◽  
Mengqi Zhang ◽  
...  

AbstractChelmon rostratus (Teleostei, Perciformes, Chaetodontidae) is a copperband butterflyfish. As an ornamental fish, the genome information for this species might help understanding the genome evolution of Chaetodontidae and adaptation/evolution of coral reef fish.In this study, using the stLFR co-Barcode reads data, we assembled a genome of 638.70 Mb in size with contig and scaffold N50 sizes of 294.41 kb and 2.61 Mb, respectively. 94.40% of scaffold sequences were assigned to 24 chromosomes using Hi-C data and BUSCO analysis showed that 97.3% (2,579) of core genes were found in our assembly. Up to 21.47 % of the genome was found to be repetitive sequences and 21,375 protein-coding genes were annotated. Among these annotated protein-coding genes, 20,163 (94.33%) proteins were assigned with possible functions.As the first genome for Chaetodontidae family, the information of these data helpfully to improve the essential to the further understanding and exploration of marine ecological environment symbiosis with coral and the genomic innovations and molecular mechanisms contributing to its unique morphology and physiological features.


2020 ◽  
Author(s):  
Zeyuan Chen ◽  
Özgül Doğan ◽  
Nadège Guiglielmoni ◽  
Anne Guichard ◽  
Michael Schrödl

AbstractBackgroundThe “Spanish” slug, Arion vulgaris Moquin-Tandon, 1855, is considered to be among the 100 worst pest species in Europe. It is common and invasive to at least northern and eastern parts of Europe, probably benefitting from climate change and the modern human lifestyle. The origin and expansion of this species, the mechanisms behind its outstanding adaptive success and ability to outcompete other land slugs are worth to be explored on a genomic level. However, a high-quality chromosome-level genome is still lacking.FindingsThe final assembly of A. vulgaris was obtained by combining short reads, linked reads, Nanopore long reads, and Hi-C data. The genome assembly size is 1.54 Gb with a contig N50 length of 8.6 Mb. We found a recent expansion of transposable elements (TEs) which results in repetitive sequences accounting for more than 75% of the A. vulgaris genome, which is the highest among all known gastropod species. We identified 32,518 protein coding genes, and 2,763 species specific genes were functionally enriched in response to stimuli, nervous system and reproduction. With 1,237 single-copy orthologs from A. vulgaris and other related mollusks with whole-genome data available, we reconstructed the phylogenetic relationships of gastropods and estimated the divergence time of stylommatophoran land snails (Achatina) and Arion slugs at around 126 million years ago, and confirmed the whole genome duplication event shared by them.ConclusionsTo our knowledge, the A. vulgaris genome is the first land slug genome assembly published to date. The high-quality genomic data will provide valuable genetic resources for further phylogeographic studies of A. vulgaris origin and expansion, invasiveness, as well as molluscan aquatic-land transition and shell formation.


GigaScience ◽  
2019 ◽  
Vol 8 (11) ◽  
Author(s):  
Sihan Lu ◽  
Jie Yang ◽  
Xuelei Dai ◽  
Feiang Xie ◽  
Jinwu He ◽  
...  

AbstractBackgroundPapilio bianor Cramer, 1777 (commonly known as the Chinese peacock butterfly) (Insecta, Lepidoptera, Papilionidae) is a widely distributed swallowtail butterfly with a wide number of geographic populations ranging from the southeast of Russia to China, Japan, India, Vietnam, Myanmar, and Thailand. Its wing color consists of both pigmentary colored scales (black, reddish) and structural colored scales (iridescent blue or green dust). A high-quality reference genome of P. bianor is an important foundation for investigating iridescent color evolution, phylogeography, and the evolution of swallowtail butterflies.FindingsWe obtained a chromosome-level de novo genome assembly of the highly heterozygous P. bianor using long Pacific Biosciences sequencing reads and high-throughput chromosome conformation capture technology. The final assembly is 421.52 Mb on 30 chromosomes (29 autosomes and 1 Z sex chromosome) with 13.12 Mb scaffold N50. In total, 15,375 protein-coding genes and 233.09 Mb of repetitive sequences were identified. Phylogenetic analyses indicated that P. bianor separated from a common ancestor of swallowtails ∼23.69–36.04 million years ago. Demographic history suggested that the population expansion of this species from the last interglacial period to the last glacial maximum possibly resulted from its decreased natural enemies and its adaptation to climate change during the glacial period.ConclusionsWe present a high-quality chromosome-level reference genome of P. bianor using long-read single-molecule sequencing and Hi-C–based chromatin interaction maps. Our results lay the foundation for exploring the genetic basis of special biological features of P. bianor and also provide a useful data source for comparative genomics and phylogenomics among butterflies and moths.


Sign in / Sign up

Export Citation Format

Share Document