scholarly journals The first high-quality chromosomal genome assembly of a medicinal and edible plant Arctium lappa

Author(s):  
Liang Xu ◽  
Shengnan Li ◽  
Yanyun Yang ◽  
Yanping Xing ◽  
Zhongren Zhang ◽  
...  

Arctium lappa has a long medicinal and edible history with great economic importance. We combined Illumina and PacBio sequences to generate the first high-quality chromosome-level draft genome of A. lappa. The assembled genome is approximately 1.79 Gb with a N50 contig size of 6.88 Mb. Approximately 1.70 Gb (95.4%) of the contig sequences were anchored onto 18 chromosomes using Hi-C data; the scaffold N50 was improved to be 91.64 Mb. Furthermore, we obtained 1.12 Gb (68.46%) of repetitive sequences and 32,771 protein-coding genes; 616 positively selected candidate genes were identified. Additionally, we compared the transcriptomes of A. lappa roots at three different developmental stages and identified 8,943 differentially expressed genes (DEGs) in these tissues. Among candidate genes related to lignan biosynthesis, the following were found to be highly correlated with the accumulation of arctiin: 4-coumarate-CoA ligase (4CL), dirigent protein (DIR), and hydroxycinnamoyl transferase (HCT). These data can be utilized to identify genes related to A. lappa quality or provide a basis for molecular identification and comparative genomics among related species.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yongle Hu ◽  
Dongna Ma ◽  
Shuju Ning ◽  
Qi Ye ◽  
Xuanxuan Zhao ◽  
...  

Strobilanthes cusia (Nees) Kuntze is an important plant used to process the traditional Chinese herbal medicines “Qingdai” and “Nanbanlangen”. The key active ingredients are indole alkaloids (IAs) that exert antibacterial, antiviral, and antitumor pharmacological activities and serve as natural dyes. We assembled the S. cusia genome at the chromosome level through combined PacBio circular consensus sequencing (CCS) and Hi-C sequencing data. Hi-C data revealed a draft genome size of 913.74 Mb, with 904.18 Mb contigs anchored into 16 pseudo-chromosomes. Contig N50 and scaffold N50 were 35.59 and 68.44 Mb, respectively. Of the 32,974 predicted protein-coding genes, 96.52% were functionally annotated in public databases. We predicted 675.66 Mb repetitive sequences, 47.08% of sequences were long terminal repeat (LTR) retrotransposons. Moreover, 983 Strobilanthes-specific genes (SSGs) were identified for the first time, accounting for ~2.98% of all protein-coding genes. Further, 245 putative centromeric and 29 putative telomeric fragments were identified. The transcriptome analysis identified 2,975 differentially expressed genes (DEGs) enriched in phenylpropanoid, flavonoid, and triterpenoid biosynthesis. This systematic characterization of key enzyme-coding genes associated with the IA pathway and basic helix-loop-helix (bHLH) transcription factor family formed a network from the shikimate pathway to the indole alkaloid synthesis pathway in S. cusia. The high-quality S. cusia genome presented herein is an essential resource for the traditional Chinese medicine genomics studies and understanding the genetic underpinning of IA biosynthesis.


2021 ◽  
Author(s):  
Chi yang ◽  
Lu Ma ◽  
Donglai Xiao ◽  
Xiaoyu Liu ◽  
Xiaoling Jiang ◽  
...  

Sparassis latifolia is a valuable edible mushroom cultivated in China. In 2018, our research group reported an incomplete and low quality genome of S. latifolia was obtained by Illumina HiSeq 2500 sequencing. These limitations in the available genome have constrained genetic and genomic studies in this mushroom resource. Herein, an updated draft genome sequence of S. latifolia was generated by Oxford Nanopore sequencing and the Hi-C technique. A total of 8.24 Gb of Oxford Nanopore long reads representing ~198.08X coverage of the S. latifolia genome were generated. Subsequently, a high-quality genome of 41.41 Mb, with scaffold and contig N50 sizes of 3.31 Mb and 1.51 Mb, respectively, was assembled. Hi-C scaffolding of the genome resulted in 12 pseudochromosomes containing 93.56% of the bases in the assembled genome. Genome annotation further revealed that 17.47% of the genome was composed of repetitive sequences. In addition, 13,103 protein-coding genes were predicted, among which 98.72% were functionally annotated. BUSCO assay results further revealed that there were 92.07% complete BUSCOs. The improved chromosome-scale assembly and genome features described here will aid further molecular elucidation of various traits, breeding of S. latifolia, and evolutionary studies with related taxa.


2017 ◽  
Vol 5 (41) ◽  
Author(s):  
Jae-Hoon Choi ◽  
Hikaru Sugiura ◽  
Ryota Moriuchi ◽  
Hirokazu Kawagishi ◽  
Hideo Dohra

ABSTRACT Burkholderia contaminans strain CH-1 converts 2-azahypoxnathine to 2-aza-8-oxohypoxanthine, plant growth-regulating compounds, by oxidation. We report here the high-quality draft genome sequence of B. contaminans CH-1. The genome contains 8,065 protein-coding sequences, including several genes possibly involved in metabolizing 2-azahypoxanthine.


2017 ◽  
Author(s):  
Zhipeng Li ◽  
Zeshan Lin ◽  
Lei Chen ◽  
Hengxing Ba ◽  
Yongzhi Yang ◽  
...  

AbstractBackgroundReindeer (Rangifer tarandus) is the only fully domesticated species in the Cervidae family, and is the only cervid with a circumpolar distribution. Unlike all other cervids, female reindeer regularly grow cranial appendages (antlers, the defining characteristics of cervids), as well as males. Moreover, reindeer milk contains more protein and less lactose than bovids’ milk. A high quality reference genome of this specie will assist efforts to elucidate these and other important features in the reindeer.FindingsWe obtained 723.2 Gb (Gigabase) of raw reads by an Illumina Hiseq 4000 platform, and a 2.64 Gb final assembly, representing 95.7% of the estimated genome (2.76 Gb according to k-mer analysis), including 92.6% of expected genes according to BUSCO analysis. The contig N50 and scaffold N50 sizes were 89.7 kilo base (kb) and 0.94 mega base (Mb), respectively. We annotated 21,555 protein-coding genes and 1.07 Gb of repetitive sequences by de novo and homology-based prediction. Homology-based searches detected 159 rRNA, 547 miRNA, 1,339 snRNA and 863 tRNA sequences in the genome of R. tarandus. The divergence time between R. tarandus, and ancestors of Bos taurus and Capra hircus, is estimated to be 29.55 million years ago (Mya).ConclusionsOur results provide the first high-quality reference genome for the reindeer, and a valuable resource for studying evolution, domestication and other unusual characteristics of the reindeer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jielong Zhou ◽  
Peifu Wu ◽  
Zhongping Xiong ◽  
Naiyong Liu ◽  
Ning Zhao ◽  
...  

A high-quality genome is of significant value when seeking to control forest pests such as Dendrolimus kikuchii, a destructive member of the order Lepidoptera that is widespread in China. Herein, a high quality, chromosome-level reference genome for D. kikuchii based on Nanopore, Pacbio HiFi sequencing and the Hi-C capture system is presented. Overall, a final genome assembly of 705.51 Mb with contig and scaffold N50 values of 20.89 and 24.73 Mb, respectively, was obtained. Of these contigs, 95.89% had unique locations on 29 chromosomes. In silico analysis revealed that the genome contained 15,323 protein-coding genes and 63.44% repetitive sequences. Phylogenetic analyses indicated that D. kikuchii may diverged from the common ancestor of Thaumetopoea. Pityocampa, Thaumetopoea ni, Heliothis virescens, Hyphantria armigera, Spodoptera frugiperda, and Spodoptera litura approximately 122.05 million years ago. Many gene families were expanded in the D. kikuchii genome, particularly those of the Toll and IMD signaling pathway, which included 10 genes in peptidoglycan recognition protein, 19 genes in MODSP, and 11 genes in Toll. The findings from this study will help to elucidate the mechanisms involved in protection of D. kikuchii against foreign substances and pathogens, and may highlight a potential channel to control this pest.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Qingzhen Wei ◽  
Jinglei Wang ◽  
Wuhong Wang ◽  
Tianhua Hu ◽  
Haijiao Hu ◽  
...  

Abstract Eggplant (Solanum melongena L.) is an economically important vegetable crop in the Solanaceae family, with extensive diversity among landraces and close relatives. Here, we report a high-quality reference genome for the eggplant inbred line HQ-1315 (S. melongena-HQ) using a combination of Illumina, Nanopore and 10X genomics sequencing technologies and Hi-C technology for genome assembly. The assembled genome has a total size of ~1.17 Gb and 12 chromosomes, with a contig N50 of 5.26 Mb, consisting of 36,582 protein-coding genes. Repetitive sequences comprise 70.09% (811.14 Mb) of the eggplant genome, most of which are long terminal repeat (LTR) retrotransposons (65.80%), followed by long interspersed nuclear elements (LINEs, 1.54%) and DNA transposons (0.85%). The S. melongena-HQ eggplant genome carries a total of 563 accession-specific gene families containing 1009 genes. In total, 73 expanded gene families (892 genes) and 34 contraction gene families (114 genes) were functionally annotated. Comparative analysis of different eggplant genomes identified three types of variations, including single-nucleotide polymorphisms (SNPs), insertions/deletions (indels) and structural variants (SVs). Asymmetric SV accumulation was found in potential regulatory regions of protein-coding genes among the different eggplant genomes. Furthermore, we performed QTL-seq for eggplant fruit length using the S. melongena-HQ reference genome and detected a QTL interval of 71.29–78.26 Mb on chromosome E03. The gene Smechr0301963, which belongs to the SUN gene family, is predicted to be a key candidate gene for eggplant fruit length regulation. Moreover, we anchored a total of 210 linkage markers associated with 71 traits to the eggplant chromosomes and finally obtained 26 QTL hotspots. The eggplant HQ-1315 genome assembly can be accessed at http://eggplant-hq.cn. In conclusion, the eggplant genome presented herein provides a global view of genomic divergence at the whole-genome level and powerful tools for the identification of candidate genes for important traits in eggplant.


GigaScience ◽  
2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Yujing Suo ◽  
Peng Sun ◽  
Huihui Cheng ◽  
Weijuan Han ◽  
Songfeng Diao ◽  
...  

Abstract Background Diospyros oleifera Cheng, of the family Ebenaceae, is an economically important tree. Phylogenetic analyses indicate that D. oleifera is closely related to Diospyros kaki Thunb. and could be used as a model plant for studies of D. kaki. Therefore, development of genomic resources of D. oleifera will facilitate auxiliary assembly of the hexaploid persimmon genome and elucidate the molecular mechanisms of important traits. Findings The D. oleifera genome was assembled with 443.6 Gb of raw reads using the Pacific Bioscience Sequel and Illumina HiSeq X Ten platforms. The final draft genome was ∼812.3 Mb and had a high level of continuity with N50 of 3.36 Mb. Fifteen scaffolds corresponding to the 15 chromosomes were assembled to a final size of 721.5 Mb using 332 scaffolds, accounting for 88.81% of the genome. Repeat sequences accounted for 54.8% of the genome. By de novo sequencing and analysis of homology with other plant species, 30,530 protein-coding genes with an average transcript size of 7,105.40 bp were annotated; of these, 28,580 protein-coding genes (93.61%) had conserved functional motifs or terms. In addition, 171 candidate genes involved in tannin synthesis and deastringency in persimmon were identified; of these chalcone synthase (CHS) genes were expanded in the D. oleifera genome compared with Diospyros lotus, Camellia sinensis, and Vitis vinifera. Moreover, 186 positively selected genes were identified, including chalcone isomerase (CHI) gene, a key enzyme in the flavonoid-anthocyanin pathway. Phylogenetic tree analysis indicated that the split of D. oleifera and D. lotus likely occurred 9.0 million years ago. In addition to the ancient γ event, a second whole-genome duplication event occurred in D. oleifera and D. lotus. Conclusions We generated a high-quality chromosome-level draft genome for D. oleifera, which will facilitate assembly of the hexaploid persimmon genome and further studies of major economic traits in the genus Diospyros.


2017 ◽  
Vol 5 (30) ◽  
Author(s):  
Yan-Ling Qiu ◽  
Dieter M. Tourlousse ◽  
Norihisa Matsuura ◽  
Akiko Ohashi ◽  
Yuji Sekiguchi

ABSTRACT We report here a high-quality draft genome sequence of Terrimicrobium sacchariphilum strain NM-5T, a facultative anaerobic, mesophilic, fermentative bacterium belonging to the class Spartobacteria of the phylum Verrucomicrobia. The genome comprises 4,751,807 bp in three contigs and has a G+C content of 60.19%. Annotation predicted 4,175 protein-coding sequences and 54 RNAs.


2019 ◽  
Vol 8 (47) ◽  
Author(s):  
Rebecca E. Parales ◽  
Gaurav Sharma ◽  
Xiangsheng Zhang ◽  
Gabriel A. Subuyuj ◽  
Jordan T. Langner ◽  
...  

A pink-pigmented facultative methylotroph, Methylorubrum populi Pinkel, was isolated from compost by selective enrichment with caffeine (3,5,7-trimethylxanthine) as the sole carbon, nitrogen, and energy source. We report here its high-quality draft genome sequence, assembled in 35 contigs totaling 5,630,907 bp. We identified 5,681 protein-coding sequences, including those putatively involved in caffeine degradation.


2020 ◽  
Vol 33 (7) ◽  
pp. 884-887
Author(s):  
Darcy E. P. Telenko ◽  
Tiffanna J. Ross ◽  
Sujoung Shim ◽  
Qinhu Wang ◽  
Raksha Singh

Phyllachora maydis is an important fungal pathogen that causes tar spot of corn and has led to significant yield loss in the United States and other countries. P. maydis is an obligate biotroph belonging to the Sordariomycetes class of Ascomycota. Due to the challenges posed by their obligate nature, there is no genome sequence available in the Phyllachora genus. P. maydis isolate PM01 was collected from a corn field in Indiana and the genome was determined by next-generation sequencing. The assembly size is 45.7 Mb, with 56.46% repetitive sequences. There are 5,992 protein-coding genes and 59 are predicted as effector proteins. This genome resource will increase our understanding of genomic features of P. maydis and will assist in studying the corn–P. maydis interaction and identifying potential resistant candidates for corn breeding programs.


Sign in / Sign up

Export Citation Format

Share Document