Pretreatment with metformin reduced dendritic spine loss following cardiac ischaemia/reperfusion injury by preventing amyloid beta aggregation, brain inflammation and mitochondrial dysfunction

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S.C Chattipakorn ◽  
T Leech ◽  
N Apaijai ◽  
L Higgins ◽  
K Jinawong ◽  
...  

Abstract Background Cognitive impairment is a major complication following acute myocardial infarction (AMI). Although reperfusion therapy is a standard treatment for AMI, it leads to additional damage to the heart, known as cardiac ischaemia/reperfusion (I/R) injury. In addition to cardiac damage, brain damage was observed following cardiac I/R including brain mitochondrial dysfunction, brain inflammation, amyloid beta aggregation, resulting in dendritic spine loss. Metformin has been reported as an effective neuroprotective agent in several brain pathologies such as stroke, diabetes-related cognitive decline, and cerebral I/R injury. However, the effects of metformin on the brain pathology after cardiac I/R have not been investigated. Purpose We hypothesized that metformin attenuates brain damages and increases dendritic spine density by preventing brain mitochondrial dysfunction, brain inflammation, and amyloid beta aggregation in non-diabetic rats. Methods Male Wistar rats (n=30) were received either sham operation (n=6) or cardiac I/R operation (n=24). Cardiac I/R was done by left anterior descending coronary artery ligation for 30 min followed by a reperfusion for 120 min. In cardiac I/R group, rats were randomly divided into 4 interventions (n=6/group) as follows; 1) vehicle (a normal saline solution), 2) 100 mg/kg of metformin (Met 100), 3) 200 mg/kg of metformin (Met 200), and 4) 400 mg/kg of metformin (Met 400). Sham operated rats were received normal saline solution. Metformin or vehicle was given to the rats at 15 min prior to cardiac ischemia via intravenous injection. At the end of reperfusion, rats were sacrificed, and the brain was rapidly removed to determine brain mitochondrial function, microglial morphology, Alzheimer's related protein, and dendritic spine density. Results Cardiac I/R led to brain mitochondrial dysfunction as indicated by increasing reactive oxygen species (ROS) levels, mitochondrial membrane depolarization, and mitochondrial swelling, compared with sham. Moreover, microglial hyperactivity was observed, together with tau hyperphosphorylation and amyloid beta aggregation, compared with sham (Fig. 1). All dosages of metformin successfully activated AMPK at the similar levels, compared with vehicle group. Mitochondrial ROS and membrane potential changes were equally improved in all groups of metformin, compared with vehicle. Although mitochondrial swelling was reduced in all groups of metformin, it was markedly reduced in Met 400 group (Fig. 1). Furthermore, microglial hyperactivity, amyloid beta aggregation, and tau hyperphosphorylation were equally reduced in all groups of metformin. For dendritic spine density, metformin significantly increased dendritic spine density, and the density was highest in Met400 group, compared with other groups (Fig. 1). Conclusion Pretreatment with metformin offers neuroprotection against the brain damages following cardiac I/R injury in a dose-dependent manner. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Thailand Research Fund (SCC), and National Science and Technology Development Agency Thailand (NC)

2015 ◽  
Vol 291 ◽  
pp. 155-163 ◽  
Author(s):  
Bérengère Petit ◽  
Alain Boissy ◽  
Adroaldo Zanella ◽  
Elodie Chaillou ◽  
Stéphane Andanson ◽  
...  

2017 ◽  
Vol 30 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Youge Qu ◽  
Chun Yang ◽  
Qian Ren ◽  
Min Ma ◽  
Chao Dong ◽  
...  

ObjectiveAlthough alterations in the dendritic spine density in the brain regions may play a role in the stress-induced depression-like phenotype, the precise mechanisms are unknown. The aim was to investigate the role of spine density in the brain regions after chronic social defeat stress (CSDS).MethodsWe examined dendritic spine density in the medial prefrontal cortex (mPFC), CA1, CA3, dentate gyrus (DG) of hippocampus, nucleus accumbens (NAc), and ventral tegmental area (VTA) of susceptible and resilient mice after CSDS.ResultsSpine density in the prelimbic area of mPFC, CA3, and DG in the susceptible group, but not resilient group, was significantly lower than control group. In contrast, spine density in the NAc and VTA in the susceptible group, but not resilient group, was significantly higher than control group.ConclusionsThe results suggest that regional differences in spine density may contribute to resilience versus susceptibility in mice subjected to CSDS.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Emőke Borbély ◽  
János Horváth ◽  
Szabina Furdan ◽  
Zsolt Bozsó ◽  
Botond Penke ◽  
...  

Several animal models of Alzheimer’s disease have been used in laboratory experiments. Intrahippocampal injection of fibrillar amyloid-beta (fAβ) peptide represents one of the most frequently used models, mimicking Aβdeposits in the brain. In our experiment synthetic fAβ1–42peptide was administered to rat hippocampus. The effect of the Aβpeptide on spatial memory and dendritic spine density was studied. The fAβ1–42-treated rats showed decreased spatial learning ability measured in Morris water maze (MWM). Simultaneously, fAβ1–42caused a significant reduction of the dendritic spine density in the rat hippocampus CA1 region. The decrease of learning ability and the loss of spine density were in good correlation. Our results prove that both methods (MWM and dendritic spine density measurement) are suitable for studying Aβ-triggered neurodegeneration processes.


2021 ◽  
pp. 105253
Author(s):  
Katherine M. Bland ◽  
Adam Aharon ◽  
Eden L. Widener ◽  
M. Irene Song ◽  
Zachary O. Casey ◽  
...  

2017 ◽  
Vol 114 (35) ◽  
pp. 9469-9474 ◽  
Author(s):  
Ethan M. Anderson ◽  
Anne Marie Wissman ◽  
Joyce Chemplanikal ◽  
Nicole Buzin ◽  
Daniel Guzman ◽  
...  

Chronic cocaine use is associated with prominent morphological changes in nucleus accumbens shell (NACsh) neurons, including increases in dendritic spine density along with enhanced motivation for cocaine, but a functional relationship between these morphological and behavioral phenomena has not been shown. Here we show that brain-derived neurotrophic factor (BDNF) signaling through tyrosine kinase B (TrkB) receptors in NACsh neurons is necessary for cocaine-induced dendritic spine formation by using either localized TrkB knockout or viral-mediated expression of a dominant negative, kinase-dead TrkB mutant. Interestingly, augmenting wild-type TrkB expression after chronic cocaine self-administration reverses the sustained increase in dendritic spine density, an effect mediated by TrkB signaling pathways that converge on extracellular regulated kinase. Loss of TrkB function after cocaine self-administration, however, leaves spine density intact but markedly enhances the motivation for cocaine, an effect mediated by specific loss of TrkB signaling through phospholipase Cgamma1 (PLCγ1). Conversely, overexpression of PLCγ1 both reduces the motivation for cocaine and reverses dendritic spine density, suggesting a potential target for the treatment of addiction in chronic users. Together, these findings indicate that BDNF-TrkB signaling both mediates and reverses cocaine-induced increases in dendritic spine density in NACsh neurons, and these morphological changes are entirely dissociable from changes in addictive behavior.


1998 ◽  
Vol 1 (3) ◽  
pp. 237-242 ◽  
Author(s):  
M.I. Pérez-Vega ◽  
G. Barajas-López ◽  
A.R. del Angel-Meza ◽  
I. González-Burgos ◽  
A. Feria-Velasco

Sign in / Sign up

Export Citation Format

Share Document