scholarly journals Reinforcement machine learning-based aortic anatomical landmarks detection from phase-contrast enhanced magnetic resonance angiography

2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
M Mejia Cordova ◽  
A Guala ◽  
X Morales ◽  
G Jimenez-Perez ◽  
L Dux-Santoy ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): Spanish Ministry of Science, Innovation and Universities; La Marató de TV3 Introduction Automatic analysis of medical imaging data may improve their clinical impact by reducing analysis time and improving reproducibility. Many medical imaging data, like 4D-flow magnetic resonance imaging (MRI), are often quantified regionally, implying the need for anatomical landmark identification to locate correspondences in the extracted data and compare among patients. Machine learning (ML) techniques hold potential for automatic analysis of medical imaging. Phase-contrast enhanced magnetic resonance angiography (PC-MRA) is a class of angiograms not requiring the administration of contrast agents. Purpose We aimed to test whether a machine learning algorithm can be trained to identify key anatomical cardiovascular landmarks on PC-MRA images and compare its performance with humans. Methods Three-hundred twenty-three aortic PC-MRA were manually annotated with the location of 4 landmarks: sinotubular junction, pulmonary artery bifurcation and first and third supra-aortic vessels (Figure 1), often used to separate the aorta in sub-regions. Patients included in the training dataset comprised healthy volunteers (40), bicuspid aortic valve patients (141), patients with degenerative aortic disease (60) and patients with genetically-triggered aortic disease (82), all without previous aortic surgery and with native aortic valve. PC-MRA images and manual annotations were used to train a DQN, a reinforcement learning algorithm that combines Q-learning with deep neural networks. The agents can navigate the images and optimally find the landmarks by following the policies learned during training. Data from thirty patients, distributed in terms of aortic condition as the training set, unseen by the algorithm in the training phase, were used to quantify intra-observer reproducibility and to assess ML algorithm performance. Distance between points was used as metric for comparisons, original human annotation was used as ground-truth and repeated-measures ANOVA was used for statistical testing. Results Human and machine learning performed similarly in the identification of the sinotubular junction (distance between points of 11.0 ± 8.1 vs. 11.1 ± 8.6 mm, respectively, p = 0.949) and first (6.6 ± 3.9 vs. 6.8 ± 5.6 mm, p = 0.886) and third (6.8 ± 4.0 vs. 8.4 ± 7.4 mm, p = 0.161) supra-aortic vessels branches but human annotation outperformed ML landmark detection in the identification of the pulmonary artery bifurcation (10.2 ± 7.0 vs. 15.2 ± 13.1 mm, p = 0.008). Computation time for landmark detection by ML was between 0.8 and 1.6 seconds on a standard computer while human annotation took approximatively two minutes. Conclusions ML-based aortic landmarks detection from phase-contrast enhanced magnetic resonance angiography is feasible and fast and performs similarly to human. Reinforced learning anatomical landmark identification unlock automatic extraction of a variety of regional aortic data, including complex 4D flow parameters. Abstract Figure

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Martina Correa Londono ◽  
Nino Trussardi ◽  
Verena C. Obmann ◽  
Davide Piccini ◽  
Michael Ith ◽  
...  

Abstract Background The native balanced steady state with free precession (bSSFP) magnetic resonance angiography (MRA) technique has been shown to provide high diagnostic image quality for thoracic aortic disease. This study compares a 3D radial respiratory self-navigated native MRA (native-SN-MRA) based on a bSSFP sequence with conventional Cartesian, 3D, contrast-enhanced MRA (CE-MRA) with navigator-gated respiration control for image quality of the entire thoracic aorta. Methods Thirty-one aortic native-SN-MRA were compared retrospectively (63.9 ± 10.3 years) to 61 CE-MRA (63.1 ± 11.7 years) serving as a reference standard. Image quality was evaluated at the aortic root/ascending aorta, aortic arch and descending aorta. Scan time was recorded. In 10 patients with both MRA sequences, aortic pathologies were evaluated and normal and pathologic aortic diameters were measured. The influence of artifacts on image quality was analyzed. Results Compared to the overall image quality of CE-MRA, the overall image quality of native-SN-MRA was superior for all segments analyzed (aortic root/ascending, p < 0.001; arch, p < 0.001, and descending, p = 0.005). Regarding artifacts, the image quality of native-SN-MRA remained superior at the aortic root/ascending aorta and aortic arch before and after correction for confounders of surgical material (i.e., susceptibility-related artifacts) (p = 0.008 both) suggesting a benefit in terms of motion artifacts. Native-SN-MRA showed a trend towards superior intraindividual image quality, but without statistical significance. Intraindividually, the sensitivity and specificity for the detection of aortic disease were 100% for native-SN-MRA. Aortic diameters did not show a significant difference (p = 0.899). The scan time of the native-SN-MRA was significantly reduced, with a mean of 05:56 ± 01:32 min vs. 08:51 ± 02:57 min in the CE-MRA (p < 0.001). Conclusions Superior image quality of the entire thoracic aorta, also regarding artifacts, can be achieved with native-SN-MRA, especially in motion prone segments, in addition to a shorter acquisition time.


2021 ◽  
Vol 22 (Supplement_2) ◽  
Author(s):  
A Guala ◽  
M Mejia Cordova ◽  
X Morales ◽  
G Jimenez-Perez ◽  
L Dux-Santoy ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): Guala A. received funding from the Spanish Ministry of Science, Innovation and Universities Introduction The heterogeneous characteristic of the thoracic aorta implies that all biomarkers with potential for risk stratification need to be references to a specific location. This is the case, for example, of diameter [1], stiffness [2] and wall shear stress [3]. This is normally achieved by the manual identification of a limited number of key anatomic landmarks [4], which is a time-demanding task and may impact biomarkers accuracy and reproducibility. Automatic identification of these anatomic landmarks may speed-up the analysis and allow for the creation of fully automatic image analysis pipelines. Machine learning (ML) algorithms might be suitable for this task. Purpose The aim of this study was to test the performance of a ML algorithm in localizing key thoracic anatomical landmarks on phase-contrast enhanced magnetic resonance angiograms (PC-MRA). Methods PC-MRA of 323 patients with native aorta and aortic valve and a variety of aortic conditions (141 bicuspid aortic valve patients, 60 patients with degenerative aortic aneurysms, 82 patients with genetic aortopathy and 40 healthy volunteers) were included in this study. Four anatomical landmarks were manually identified on PC-MRA by an experienced researcher: sinotubular junction, the pulmonary artery bifurcation and the first and third supra-aortic vessel braches. A reinforcement learning algorithm (DQN), combining Q-learning with deep neural networks, was trained. The algorithm was tested in a separate set of 30 PC-MRA with similar distribution of aortic conditions in which human intra-observer reproducibility was quantified. The distance between points was used as quality metric and human annotation was considered as ground-truth. Repeated-measures ANOVA was used for statistical testing. Results ML algorithm resulted in performance similar to the intra-observer variability obtained by the experienced human reader in the identification of the sinotubular junction (11.1 ± 8.6 vs 11.0 ± 8.1 mm, p = 0.949) and first (6.8 ± 5.6 vs 6.6 ± 3.9 mm, p = 0.886) and third (8.4 ± 7.4 vs 6.8 ± 4.0 mm, p = 0.161) supra-aortic vessels branches. However, the algorithm did not reach human-level performance in the localization of the pulmonary artery bifurcation (15.2 ± 13.1 vs 10.2 ± 7.0 mm, p = 0.008). The time needed to the ML algorithm to locate all points ranged between 0.8 and 1.6 seconds on a standard computer while manual annotation required around two minutes to be performed. Conclusions The rapid identification of key aortic anatomical landmarks by a reinforced learning algorithm is feasible with human-level performance. This approach may thus be used for the design of fully-automatic pipeline for 4D flow CMR analysis.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1071
Author(s):  
Lucia Billeci ◽  
Asia Badolato ◽  
Lorenzo Bachi ◽  
Alessandro Tonacci

Alzheimer’s disease is notoriously the most common cause of dementia in the elderly, affecting an increasing number of people. Although widespread, its causes and progression modalities are complex and still not fully understood. Through neuroimaging techniques, such as diffusion Magnetic Resonance (MR), more sophisticated and specific studies of the disease can be performed, offering a valuable tool for both its diagnosis and early detection. However, processing large quantities of medical images is not an easy task, and researchers have turned their attention towards machine learning, a set of computer algorithms that automatically adapt their output towards the intended goal. In this paper, a systematic review of recent machine learning applications on diffusion tensor imaging studies of Alzheimer’s disease is presented, highlighting the fundamental aspects of each work and reporting their performance score. A few examined studies also include mild cognitive impairment in the classification problem, while others combine diffusion data with other sources, like structural magnetic resonance imaging (MRI) (multimodal analysis). The findings of the retrieved works suggest a promising role for machine learning in evaluating effective classification features, like fractional anisotropy, and in possibly performing on different image modalities with higher accuracy.


Sign in / Sign up

Export Citation Format

Share Document