scholarly journals Artificial Intelligence to Generate Medical Images: Augmenting the Cardiologist’s Visual Clinical Workflow

Author(s):  
Max L Olender ◽  
José M de la Torre Hernández ◽  
Lambros S Athanasiou ◽  
Farhad R Nezami ◽  
Elazer R Edelman

Abstract Artificial intelligence (AI) offers great promise in cardiology, and medicine broadly, for its ability to tirelessly integrate vast amounts of data. Applications in medical imaging are particularly attractive, as images are a powerful means to convey rich information and are extensively utilized in cardiology practice. Departing from other AI approaches in cardiology focused on task automation and pattern recognition, we describe a digital health platform to synthesize enhanced, yet familiar, clinical images to augment the cardiologist’s visual clinical workflow. In this article, we present the framework, technical fundamentals, and functional applications of the methodology, especially as it pertains to intravascular imaging. A conditional generative adversarial network was trained with annotated images of atherosclerotic diseased arteries to generate synthetic optical coherence tomography and intravascular ultrasound images on the basis of specified plaque morphology. Systems leveraging this unique and flexible construct, whereby a pair of neural networks are competitively trained in tandem, can rapidly generate useful images. These synthetic images replicate the style, and in several ways exceed the content and function, of normally acquired images. By using this technique and employing AI in such applications, one can ameliorate challenges in image quality, interpretability, coherence, completeness, and granularity, thereby enhancing medical education and clinical decision-making.

Neurosurgery ◽  
2019 ◽  
Vol 87 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Sandip S Panesar ◽  
Michel Kliot ◽  
Rob Parrish ◽  
Juan Fernandez-Miranda ◽  
Yvonne Cagle ◽  
...  

Abstract Artificial intelligence (AI)-facilitated clinical automation is expected to become increasingly prevalent in the near future. AI techniques may permit rapid and detailed analysis of the large quantities of clinical data generated in modern healthcare settings, at a level that is otherwise impossible by humans. Subsequently, AI may enhance clinical practice by pushing the limits of diagnostics, clinical decision making, and prognostication. Moreover, if combined with surgical robotics and other surgical adjuncts such as image guidance, AI may find its way into the operating room and permit more accurate interventions, with fewer errors. Despite the considerable hype surrounding the impending medical AI revolution, little has been written about potential downsides to increasing clinical automation. These may include both direct and indirect consequences. Directly, faulty, inadequately trained, or poorly understood algorithms may produce erroneous results, which may have wide-scale impact. Indirectly, increasing use of automation may exacerbate de-skilling of human physicians due to over-reliance, poor understanding, overconfidence, and lack of necessary vigilance of an automated clinical workflow. Many of these negative phenomena have already been witnessed in other industries that have already undergone, or are undergoing “automation revolutions,” namely commercial aviation and the automotive industry. This narrative review explores the potential benefits and consequences of the anticipated medical AI revolution from a neurosurgical perspective.


2021 ◽  
Vol 10 (22) ◽  
pp. 5284
Author(s):  
Michael Feehan ◽  
Leah A. Owen ◽  
Ian M. McKinnon ◽  
Margaret M. DeAngelis

The use of artificial intelligence (AI) and machine learning (ML) in clinical care offers great promise to improve patient health outcomes and reduce health inequity across patient populations. However, inherent biases in these applications, and the subsequent potential risk of harm can limit current use. Multi-modal workflows designed to minimize these limitations in the development, implementation, and evaluation of ML systems in real-world settings are needed to improve efficacy while reducing bias and the risk of potential harms. Comprehensive consideration of rapidly evolving AI technologies and the inherent risks of bias, the expanding volume and nature of data sources, and the evolving regulatory landscapes, can contribute meaningfully to the development of AI-enhanced clinical decision making and the reduction in health inequity.


2021 ◽  
Vol 8 (4) ◽  
pp. 477-495
Author(s):  
Mohammad Mofatteh ◽  
◽  

<abstract> <p>Neurosurgeons receive extensive and lengthy training to equip themselves with various technical skills, and neurosurgery require a great deal of pre-, intra- and postoperative clinical data collection, decision making, care and recovery. The last decade has seen a significant increase in the importance of artificial intelligence (AI) in neurosurgery. AI can provide a great promise in neurosurgery by complementing neurosurgeons' skills to provide the best possible interventional and noninterventional care for patients by enhancing diagnostic and prognostic outcomes in clinical treatment and help neurosurgeons with decision making during surgical interventions to improve patient outcomes. Furthermore, AI is playing a pivotal role in the production, processing and storage of clinical and experimental data. AI usage in neurosurgery can also reduce the costs associated with surgical care and provide high-quality healthcare to a broader population. Additionally, AI and neurosurgery can build a symbiotic relationship where AI helps to push the boundaries of neurosurgery, and neurosurgery can help AI to develop better and more robust algorithms. This review explores the role of AI in interventional and noninterventional aspects of neurosurgery during pre-, intra- and postoperative care, such as diagnosis, clinical decision making, surgical operation, prognosis, data acquisition, and research within the neurosurgical arena.</p> </abstract>


2021 ◽  
Author(s):  
Gregory M Miller ◽  
Austin J Ellis ◽  
Rangaprasad Sarangarajan ◽  
Amay Parikh ◽  
Leonardo O Rodrigues ◽  
...  

Objective: The COVID-19 pandemic generated a massive amount of clinical data, which potentially holds yet undiscovered answers related to COVID-19 morbidity, mortality, long term effects, and therapeutic solutions. The objective of this study was to generate insights on COVID-19 mortality-associated factors and identify potential new therapeutic options for COVID-19 patients by employing artificial intelligence analytics on real-world data. Materials and Methods: A Bayesian statistics-based artificial intelligence data analytics tool (bAIcis®) within Interrogative Biology® platform was used for network learning, inference causality and hypothesis generation to analyze 16,277 PCR positive patients from a database of 279,281 inpatients and outpatients tested for SARS-CoV-2 infection by antigen, antibody, or PCR methods during the first pandemic year in Central Florida. This approach generated causal networks that enabled unbiased identification of significant predictors of mortality for specific COVID-19 patient populations. These findings were validated by logistic regression, regression by least absolute shrinkage and selection operator, and bootstrapping. Results: We found that in the SARS-CoV-2 PCR positive patient cohort, early use of the antiemetic agent ondansetron was associated with increased survival in mechanically ventilated patients. Conclusions: The results demonstrate how real world COVID-19 focused data analysis using artificial intelligence can generate valid insights that could possibly support clinical decision-making and minimize the future loss of lives and resources.


2011 ◽  
pp. 1017-1029
Author(s):  
William Claster ◽  
Nader Ghotbi ◽  
Subana Shanmuganathan

There is a treasure trove of hidden information in the textual and narrative data of medical records that can be deciphered by text-mining techniques. The information provided by these methods can provide a basis for medical artificial intelligence and help support or improve clinical decision making by medical doctors. In this paper we extend previous work in an effort to extract meaningful information from free text medical records. We discuss a methodology for the analysis of medical records using some statistical analysis and the Kohonen Self-Organizing Map (SOM). The medical data derive from about 700 pediatric patients’ radiology department records where CT (Computed Tomography) scanning was used as part of a diagnostic exploration. The patients underwent CT scanning (single and multiple) throughout a one-year period in 2004 at the Nagasaki University Medical Hospital. Our approach led to a model based on SOM clusters and statistical analysis which may suggest a strategy for limiting CT scan requests. This is important because radiation at levels ordinarily used for CT scanning may pose significant health risks especially to children.


CJEM ◽  
2020 ◽  
Vol 22 (S1) ◽  
pp. S90-S90
Author(s):  
A. Kirubarajan ◽  
A. Taher ◽  
S. Khan ◽  
S. Masood

Introduction: The study of artificial intelligence (AI) in medicine has become increasingly popular over the last decade. The emergency department (ED) is uniquely situated to benefit from AI due to its power of diagnostic prediction, and its ability to continuously improve with time. However, there is a lack of understanding of the breadth and scope of AI applications in emergency medicine, and evidence supporting its use. Methods: Our scoping review was completed according to PRISMA-ScR guidelines and was published a priori on Open Science Forum. We systematically searched databases (Medline-OVID, EMBASE, CINAHL, and IEEE) for AI interventions relevant to the ED. Study selection and data extraction was performed independently by two investigators. We categorized studies based on type of AI model used, location of intervention, clinical focus, intervention sub-type, and type of comparator. Results: Of the 1483 original database citations, a total of 181 studies were included in the scoping review. Inter-rater reliability for study screening for titles and abstracts was 89.1%, and for full-text review was 77.8%. Overall, we found that 44 (24.3%) studies utilized supervised learning, 63 (34.8%) studies evaluated unsupervised learning, and 13 (7.2%) studies utilized natural language processing. 17 (9.4%) studies were conducted in the pre-hospital environment, with the remainder occurring either in the ED or the trauma bay. The majority of interventions centered around prediction (n = 73, 40.3%). 48 studies (25.5%) analyzed AI interventions for diagnosis. 23 (12.7%) interventions focused on diagnostic imaging. 89 (49.2%) studies did not have a comparator to their AI intervention. 63 (34.8%) studies used statistical models as a comparator, 19 (10.5%) of which were clinical decision making tools. 15 (8.3%) studies used humans as comparators, with 12 of the 15 (80%) studies showing superiority in favour of the AI intervention when compared to a human. Conclusion: AI-related research is rapidly increasing in emergency medicine. AI interventions are heterogeneous in both purpose and design, but primarily focus on predictive modeling. Most studies do not involve a human comparator and lack information on patient-oriented outcomes. While some studies show promising results for AI-based interventions, there remains uncertainty regarding their superiority over standard practice, and further research is needed prior to clinical implementation.


2020 ◽  
pp. 167-186
Author(s):  
Steven Walczak

Clinical decision support systems are meant to improve the quality of decision-making in healthcare. Artificial intelligence is the science of creating intelligent systems that solve complex problems at the level of or better than human experts. Combining artificial intelligence methods into clinical decision support will enable the utilization of large quantities of data to produce relevant decision-making information to practitioners. This article examines various artificial intelligence methodologies and shows how they may be incorporated into clinical decision-making systems. A framework for describing artificial intelligence applications in clinical decision support systems is presented.


Sign in / Sign up

Export Citation Format

Share Document