scholarly journals Artificial Intelligence, Heuristic Biases, and the Optimization of Health Outcomes: Cautionary Optimism

2021 ◽  
Vol 10 (22) ◽  
pp. 5284
Author(s):  
Michael Feehan ◽  
Leah A. Owen ◽  
Ian M. McKinnon ◽  
Margaret M. DeAngelis

The use of artificial intelligence (AI) and machine learning (ML) in clinical care offers great promise to improve patient health outcomes and reduce health inequity across patient populations. However, inherent biases in these applications, and the subsequent potential risk of harm can limit current use. Multi-modal workflows designed to minimize these limitations in the development, implementation, and evaluation of ML systems in real-world settings are needed to improve efficacy while reducing bias and the risk of potential harms. Comprehensive consideration of rapidly evolving AI technologies and the inherent risks of bias, the expanding volume and nature of data sources, and the evolving regulatory landscapes, can contribute meaningfully to the development of AI-enhanced clinical decision making and the reduction in health inequity.

Arthroplasty ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Glen Purnomo ◽  
Seng-Jin Yeo ◽  
Ming Han Lincoln Liow

AbstractArtificial intelligence (AI) is altering the world of medicine. Given the rapid advances in technology, computers are now able to learn and improve, imitating humanoid cognitive function. AI applications currently exist in various medical specialties, some of which are already in clinical use. This review presents the potential uses and limitations of AI in arthroplasty to provide a better understanding of the existing technology and future direction of this field.Recent literature demonstrates that the utilization of AI in the field of arthroplasty has the potential to improve patient care through better diagnosis, screening, planning, monitoring, and prediction. The implementation of AI technology will enable arthroplasty surgeons to provide patient-specific management in clinical decision making, preoperative health optimization, resource allocation, decision support, and early intervention. While this technology presents a variety of exciting opportunities, it also has several limitations and challenges that need to be overcome to ensure its safety and effectiveness.


Author(s):  
Max L Olender ◽  
José M de la Torre Hernández ◽  
Lambros S Athanasiou ◽  
Farhad R Nezami ◽  
Elazer R Edelman

Abstract Artificial intelligence (AI) offers great promise in cardiology, and medicine broadly, for its ability to tirelessly integrate vast amounts of data. Applications in medical imaging are particularly attractive, as images are a powerful means to convey rich information and are extensively utilized in cardiology practice. Departing from other AI approaches in cardiology focused on task automation and pattern recognition, we describe a digital health platform to synthesize enhanced, yet familiar, clinical images to augment the cardiologist’s visual clinical workflow. In this article, we present the framework, technical fundamentals, and functional applications of the methodology, especially as it pertains to intravascular imaging. A conditional generative adversarial network was trained with annotated images of atherosclerotic diseased arteries to generate synthetic optical coherence tomography and intravascular ultrasound images on the basis of specified plaque morphology. Systems leveraging this unique and flexible construct, whereby a pair of neural networks are competitively trained in tandem, can rapidly generate useful images. These synthetic images replicate the style, and in several ways exceed the content and function, of normally acquired images. By using this technique and employing AI in such applications, one can ameliorate challenges in image quality, interpretability, coherence, completeness, and granularity, thereby enhancing medical education and clinical decision-making.


Author(s):  
Faustina Acheampong ◽  
Vivian Vimarlund

Information technology has been suggested to improve patient health outcomes and reduce the burden of care. In this study, we explored the effects of collaborative innovation between caregivers and patients on healthcare delivery as a consequence of the use of an IT-based device by patients with atrial fibrillation. Two cardiologists and two nurses were interviewed while questionnaires were mailed to 75 patients querying them about the use of a home-based ECG for remote monitoring. Findings indicated that the caregivers considered the device to enhance the quality of clinical decision-making. Patients found the device to be useful and felt more involved in their own care. However, the introduction of the device presented work overload for the caregivers. Thus, the facilitation of timely diagnostics and decision-making were not realized. IT is an enabler through which innovation in healthcare delivery can be realized, but it must be integrated into work practices to realize potential benefits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Brenna N. Renn ◽  
Matthew Schurr ◽  
Oleg Zaslavsky ◽  
Abhishek Pratap

Artificial intelligence (AI) in healthcare aims to learn patterns in large multimodal datasets within and across individuals. These patterns may either improve understanding of current clinical status or predict a future outcome. AI holds the potential to revolutionize geriatric mental health care and research by supporting diagnosis, treatment, and clinical decision-making. However, much of this momentum is driven by data and computer scientists and engineers and runs the risk of being disconnected from pragmatic issues in clinical practice. This interprofessional perspective bridges the experiences of clinical scientists and data science. We provide a brief overview of AI with the main focus on possible applications and challenges of using AI-based approaches for research and clinical care in geriatric mental health. We suggest future AI applications in geriatric mental health consider pragmatic considerations of clinical practice, methodological differences between data and clinical science, and address issues of ethics, privacy, and trust.


2021 ◽  
Vol 8 (4) ◽  
pp. 477-495
Author(s):  
Mohammad Mofatteh ◽  
◽  

<abstract> <p>Neurosurgeons receive extensive and lengthy training to equip themselves with various technical skills, and neurosurgery require a great deal of pre-, intra- and postoperative clinical data collection, decision making, care and recovery. The last decade has seen a significant increase in the importance of artificial intelligence (AI) in neurosurgery. AI can provide a great promise in neurosurgery by complementing neurosurgeons' skills to provide the best possible interventional and noninterventional care for patients by enhancing diagnostic and prognostic outcomes in clinical treatment and help neurosurgeons with decision making during surgical interventions to improve patient outcomes. Furthermore, AI is playing a pivotal role in the production, processing and storage of clinical and experimental data. AI usage in neurosurgery can also reduce the costs associated with surgical care and provide high-quality healthcare to a broader population. Additionally, AI and neurosurgery can build a symbiotic relationship where AI helps to push the boundaries of neurosurgery, and neurosurgery can help AI to develop better and more robust algorithms. This review explores the role of AI in interventional and noninterventional aspects of neurosurgery during pre-, intra- and postoperative care, such as diagnosis, clinical decision making, surgical operation, prognosis, data acquisition, and research within the neurosurgical arena.</p> </abstract>


2021 ◽  
pp. 036354652110086
Author(s):  
Prem N. Ramkumar ◽  
Bryan C. Luu ◽  
Heather S. Haeberle ◽  
Jaret M. Karnuta ◽  
Benedict U. Nwachukwu ◽  
...  

Artificial intelligence (AI) represents the fourth industrial revolution and the next frontier in medicine poised to transform the field of orthopaedics and sports medicine, though widespread understanding of the fundamental principles and adoption of applications remain nascent. Recent research efforts into implementation of AI in the field of orthopaedic surgery and sports medicine have demonstrated great promise in predicting athlete injury risk, interpreting advanced imaging, evaluating patient-reported outcomes, reporting value-based metrics, and augmenting the patient experience. Not unlike the recent emphasis thrust upon physicians to understand the business of medicine, the future practice of sports medicine specialists will require a fundamental working knowledge of the strengths, limitations, and applications of AI-based tools. With appreciation, caution, and experience applying AI to sports medicine, the potential to automate tasks and improve data-driven insights may be realized to fundamentally improve patient care. In this Current Concepts review, we discuss the definitions, strengths, limitations, and applications of AI from the current literature as it relates to orthopaedic sports medicine.


2016 ◽  
Vol 3 (2) ◽  
pp. e26 ◽  
Author(s):  
Deborah J Cohen ◽  
Sara R Keller ◽  
Gillian R Hayes ◽  
David A Dorr ◽  
Joan S Ash ◽  
...  

2021 ◽  
Author(s):  
Gregory M Miller ◽  
Austin J Ellis ◽  
Rangaprasad Sarangarajan ◽  
Amay Parikh ◽  
Leonardo O Rodrigues ◽  
...  

Objective: The COVID-19 pandemic generated a massive amount of clinical data, which potentially holds yet undiscovered answers related to COVID-19 morbidity, mortality, long term effects, and therapeutic solutions. The objective of this study was to generate insights on COVID-19 mortality-associated factors and identify potential new therapeutic options for COVID-19 patients by employing artificial intelligence analytics on real-world data. Materials and Methods: A Bayesian statistics-based artificial intelligence data analytics tool (bAIcis®) within Interrogative Biology® platform was used for network learning, inference causality and hypothesis generation to analyze 16,277 PCR positive patients from a database of 279,281 inpatients and outpatients tested for SARS-CoV-2 infection by antigen, antibody, or PCR methods during the first pandemic year in Central Florida. This approach generated causal networks that enabled unbiased identification of significant predictors of mortality for specific COVID-19 patient populations. These findings were validated by logistic regression, regression by least absolute shrinkage and selection operator, and bootstrapping. Results: We found that in the SARS-CoV-2 PCR positive patient cohort, early use of the antiemetic agent ondansetron was associated with increased survival in mechanically ventilated patients. Conclusions: The results demonstrate how real world COVID-19 focused data analysis using artificial intelligence can generate valid insights that could possibly support clinical decision-making and minimize the future loss of lives and resources.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Géza Kogler ◽  
Christopher Hovorka

This position paper outlines the important role of academia in shaping the orthotics and prosthetics (O&P) profession and preparing for its future. In the United States, most healthcare professions including O&P are under intense pressure to provide cost effective treatments and quantifiable health outcomes. Pivotal changes are needed in the way O&P services are provided to remain competitive. This will require the integration of new technologies and data driven processes that have the potential to streamline workflows, reduce errors and inform new methods of clinical care and device manufacturing. Academia can lead this change, starting with a restructuring in academic program curricula that will enable the next generation of professionals to cope with multiple demands such as the provision of services for an increasing number of patients by a relatively small workforce of certified practitioners delivering these services at a reduced cost, with the expectation of significant, meaningful, and measurable value. Key curricular changes will require replacing traditional labor-intensive and inefficient fabrication methods with the integration of newer technologies (i.e., digital shape capture, digital modeling/rectification and additive manufacturing). Improving manufacturing efficiencies will allow greater curricular emphasis on clinical training and education – an area that has traditionally been underemphasized. Providing more curricular emphasis on holistic patient care approaches that utilize systematic and evidence-based methods in patient assessment, treatment planning, dosage of O&P technology use, and measurement of patient outcomes is imminent. Strengthening O&P professionals’ clinical decision-making skills and decreasing labor-intensive technical fabrication aspects of the curriculum will be critical in moving toward a digital and technology-centric practice model that will enable future practitioners to adapt and survive. Article PDF Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/36673/28349 How To Cite: Kogler GF, Hovorka CF. Academia’s role to drive change in the orthotics and prosthetics profession. Canadian Prosthetics & Orthotics Journal. 2021; Volume 4, Issue 2, No.21. https://doi.org/10.33137/cpoj.v4i2.36673 Corresponding Author: Géza F. KoglerOrthotics and Prosthetics Unit, Kennesaw State University.E-Mail: [email protected] ID: https://orcid.org/0000-0003-0212-5520


Sign in / Sign up

Export Citation Format

Share Document