scholarly journals Raloxifene administration enhances retention in an orthodontic relapse model

2020 ◽  
Vol 42 (4) ◽  
pp. 371-377
Author(s):  
Niloufar Azami ◽  
Po-Jung Chen ◽  
Shivam Mehta ◽  
Zana Kalajzic ◽  
Eliane H Dutra ◽  
...  

Abstract Background and objectives Orthodontic relapse is a physiologic process that involves remodelling of the alveolar bone and principle periodontal ligament fibres. Raloxifene is an Food and Drug Administration (FDA)-approved selective oestrogen receptor modulator that inhibits systemic bone loss. In our study, we examined the effects of Raloxifene on alveolar bone modelling and orthodontic relapse in a rodent model. Materials and methods The efficacy of raloxifene was evaluated in 15-week-old male Wistar rats, 8 in each group (Control, Raloxifene, Raloxifene + 7-day relapse, Raloxifene + 14-day relapse) for a total of 42 days. All animals had 14 days of orthodontic tooth movement with a closed nickel–titanium coil spring tied from incisors to right first molar applying 5–8 gm of force. On the day of appliance removal, impression was taken with silicon material and the distance between first molar and second molar was filled with light-cured adhesive resin cement for retention phase. Raloxifene Retention, Raloxifene Retention + 7D, Raloxifene Retention + 14D groups received 14 daily doses of raloxifene (2.0 mg/kg/day) subcutaneously after orthodontic tooth movement during retention. After 14 days of retention, the retainer was removed and right first molar was allowed to relapse for a period of 14 days. Raloxifene injection continued for the Raloxifene + 14-day relapse group during relapse phase too. Control group received saline injections during retention. Animals were euthanized by CO2 inhalation. The outcome measure included percentage of relapse, bone volume fraction, tissue density, and histology analysis using tartrate-resistant acid phosphatase staining and determining receptor activator of nuclear factor-кB-ligand (RANKL) and osteoprotegerin expression. Results Raloxifene Retention + 14D group had significantly less (P < 0.05) orthodontic relapse when compared with other groups. There was a significant increase (P < 0.05) in bone volume fraction and tissue density in the Raloxifene Retention + 14D group when compared with other groups. Similarly, there was significant decrease in number of osteoclasts and RANKL expression in Raloxifene Retention + 14D group when compared with Raloxifene Retention + 7D group (P < 0.05). Conclusion Raloxifene could decrease post-orthodontic treatment relapse by decreasing bone resorption and indirectly enhancing bone formation.

2020 ◽  
Vol 90 (6) ◽  
pp. 774-782
Author(s):  
Ng Heng Khiang Teh ◽  
Saritha Sivarajan ◽  
Muhammad Khan Asif ◽  
Norliza Ibrahim ◽  
Mang Chek Wey

ABSTRACT Objectives To investigate the effect of micro-osteoperforation (MOP) on the horizontal and vertical distribution of mandibular trabeculae bone volume fraction in relation to different MOP intervals during canine retraction. Materials and Methods This single-center, single-blinded, prospective randomized split-mouth clinical trial included 30 healthy participants aged 18 years and older, randomized into three groups of different MOP intervals (4, 8, and 12-weekly). Cone beam computed tomography images were taken to assess the bone volume fraction (bone volume over total volume or BV/TV). Results BV/TV was significantly reduced (mean difference: 9.79%, standard deviation [SD]: 11.89%; 95% confidence interval [CI]: 4.77, 14.81%; P < .01) and canine retraction increased (mean difference: -1.25 mm/4 mo, SD: 0.79 mm; 95% CI: -1.59, -0.92 mm; P < .01) with MOP, compared to control sites. MOP significantly changed the vertical and horizontal patterns of trabeculae bone with lower values nearer to intervention sites. Only the 4-weekly MOP interval group showed significant decrease in BV/TV (mean difference: 14.73%, SD: 12.88%; 95% CI: 3.96, 25.50%; P = .01) despite significant increase in canine retraction rate for all interval groups. With the use of MOP, BV/TV was found to be inversely correlated to the rate of canine retraction (r = -0.425; P = .04). Conclusions Mandibular trabecular alveolar bone volume fraction was reduced and rate of orthodontic tooth movement increased with MOP, especially in the 4-weekly interval. However, this effect was limited to the immediate interdental region of MOP.


2012 ◽  
Vol 83 (3) ◽  
pp. 402-409 ◽  
Author(s):  
Nan Ru ◽  
Sean Shih-Yao Liu ◽  
Li Zhuang ◽  
Song Li ◽  
Yuxing Bai

ABSTRACT Objective: To observe the real-time microarchitecture changes of the alveolar bone and root resorption during orthodontic treatment. Materials and Methods: A 10 g force was delivered to move the maxillary left first molars mesially in twenty 10-week-old rats for 14 days. The first molar and adjacent alveolar bone were scanned using in vivo microcomputed tomography at the following time points: days 0, 3, 7, and 14. Microarchitecture parameters, including bone volume fraction, structure model index, trabecular thickness, trabecular number, and trabecular separation of alveolar bone, were measured on the compression and tension side. The total root volume was measured, and the resorption crater volume at each time point was calculated. Univariate repeated measures analysis of variance with Bonferroni corrections were performed to compare the differences in each parameter between time points with significance level at P < .05. Results: From day 3 to day 7, bone volume fraction, structure model index, trabecular thickness, and trabecular separation decreased significantly on the compression side, but the same parameters increased significantly on the tension side from day 7 to day 14. Root resorption volume of the mesial root increased significantly on day 7 of orthodontic loading. Conclusions: Real-time root and bone resorption during orthodontic movement can be observed in 3 dimensions using in vivo micro-CT. Alveolar bone resorption and root resorption were observed mostly in the apical third on day 7 on the compression side; bone formation was observed on day 14 on the tension side during orthodontic tooth movement.


2017 ◽  
Vol 87 (5) ◽  
pp. 717-724 ◽  
Author(s):  
Zachary Librizzi ◽  
Zana Kalajzic ◽  
Daniel Camacho ◽  
Sumit Yadav ◽  
Ravindra Nanda ◽  
...  

ABSTRACT Objective: To evaluate the effect of corticotomy and corticision, with and without a full mucoperiosteal flap, on the rate of tooth movement and alveolar response in a rat model. Materials and Methods: Sixty male, 6-week-old Wistar rats were divided into five groups based on surgical procedure, as follows: control (no tooth movement), orthodontic tooth movement (OTM) only, corticotomy, corticision, and corticision with full mucoperiosteal flap (corticision + flap). A force of 10–15g was applied from the maxillary left first molar to the maxillary incisors using nickel-titanium springs. Surgery was performed at the time of appliance placement (day 0), and tooth movement occurred for 21 days. Micro–computed tomography was performed on day 21 to evaluate the amount of tooth movement and alveolar bone parameters. Histomorphometry, including tartrate-resistant acid phosphatase staining, was performed to quantify the osteoclast parameters at day 21. Results: No statistical differences in the amount of OTM, bone volume fraction, and tissue density and the osteoclast parameters were found among all experimental groups. Conclusions: Corticotomy and corticision, with or without a full mucoperiosteal flap, did not show a significant effect on either the OTM magnitude or alveolar bone response.


2019 ◽  
Vol 41 (6) ◽  
pp. 601-608 ◽  
Author(s):  
Joy Chang ◽  
Po-Jung Chen ◽  
Eliane H Dutra ◽  
Ravindra Nanda ◽  
Sumit Yadav

Abstract Objective The primary objective of this study was to investigate how the extent of surgical insult affects the orthodontic tooth movement (OTM) and the alveolar bone modelling and remodelling in a rodent model. Material and methods 15-week-old male Wistar rats were used in the research and they were randomly divided into three treatment groups: (1) OTM only (N = 8); (2) OTM + 2 alveolar decortication (AD) (less surgical insult) (N = 8); and (3) OTM + 4 AD (more surgical insult) (N = 8). A nickel-titanium spring delivering 5–8 g of force was used to protract the molar mesially using maxillary incisors as an anchorage. AD was done using a hand piece and a round bur, adjacent to the left first maxillary molar on the palatal alveolar bone. After 14 days of OTM Wistar rats were killed and microfocus computed tomography and histological analysis were performed. Results The OTM + 4AD group presented with a significant increase (P < 0.05) in the rate of tooth movement when compared to OTM + 2AD group and OTM only group. In addition, the OTM + 4AD group had a significant decrease in bone volume and tissue density (P < 0.05) and a significant increase (P < 0.05) in the trabecular spacing and trabecular thickness when compared to OTM only. Histological quantification of tartrate-resistant acid phosphatase indicated a significant percent increase (P < 0.05) in OTM + 4AD group, when compared to OTM + 2AD and OTM only group. Results Increased surgical insult increases the rate of OTM. Additionally, increased surgical insult decreases the bone volume and the tissue density.


2019 ◽  
Vol 53 (4) ◽  
pp. 264-271
Author(s):  
Theerasak Nakornnoi ◽  
Chidchanok Leethanakul ◽  
Bancha Samruajbenjakun

Objective: To investigate the effects of leukocyte-platelet-rich plasma (L-PRP) on the alveolar bone changes at the compression and tension sides during orthodontic tooth movement. Materials and Methods: Around 20 New Zealand white rabbits were used in a split-mouth design. The maxillary first premolar was moved mesially with a nickel-titanium closed-coil spring. One side of the maxilla was randomly injected with L-PRP, while the contralateral side served as the control which received normal saline. The alveolar bone adjacent to the maxillary first premolar was scanned using microcomputed tomography at days 0, 7, 14, and 28. Microstructural parameters including bone volume fraction, trabecular thickness, and trabecular separation of alveolar bone were assessed on the compression and tension sides of the maxillary first premolar. Results: Compared between the groups, the L-PPR group showed a significantly decreased bone volume fraction on the compression side on days 7 and 14 but significantly increased bone volume fraction on the tension side on day 14. However, there were no statistically significant differences in the parameters of trabecular thickness and trabecular separation. Conclusion: Local administration of L-PRP may promote bone resorption on the compression side and bone formation on the tension side at the initial stage of orthodontic tooth movement.


Author(s):  
Anjali Nanda ◽  
Po-Jung Chen ◽  
Shivam Mehta ◽  
Zana Kalajzic ◽  
Eliane H Dutra ◽  
...  

Summary Objective The primary objective of this study was to quantify the orthodontic tooth movement (OTM) and orthodontically induced root resorption (OIRR) with differential force system in conjunction with minimal surgical insult. Material and methods 15-week-old, 48 male Wistar rats were used in the research and were randomly divided into six groups: 1. Group 1 (8 Wistar rats): OTM for 14 days with 8-g force; 2. Group 2 (8 Wistar rats): OTM for 14 days with 25-g force; 3. Group 3 (8 Wistar rats): OTM for 14 days with 100-g force; 4. Group 4 (8 Wistar rats): OTM for 14 days with 8-g force and alveolar decortications (ADs); 5. Group 5 (8 Wistar rats): OTM for 14 days with 25-g force and ADs; 6. Group 6 (8 Wistar rats): OTM for 14 days with 100-g force and ADs. A nickel–titanium spring was used to protract the molar mesially using maxillary incisors as an anchorage. ADs (minimal surgical insult) were done using a hand piece and a round bur, adjacent to the left first maxillary molar on the palatal alveolar bone. After 14 days of OTM, Wistar rats were killed and microfocus computed tomography and histological analysis were performed. Results The 100-g group showed significant increase (P < 0.05) in OTM. However, with ADs, the OTM was significantly higher (P < 0.05) in 8 and 100 g. In addition, with ADs, there is significant increase (P < 0.05) in OIRR and significant decrease (P < 0.05) in bone volume fraction. Histological quantification of tartrate-resistant acid phosphatase indicated a significant increase (P < 0.05) in the number of osteoclasts with ADs when compared without ADs. Conclusions Light force in conjunction with ADs are optimal to accelerate the OTM. Additionally, ADs increases the OIRR.


2013 ◽  
Vol 84 (2) ◽  
pp. 297-303 ◽  
Author(s):  
Zana Kalajzic ◽  
Elizabeth Blake Peluso ◽  
Achint Utreja ◽  
Nathaniel Dyment ◽  
Jun Nihara ◽  
...  

ABSTRACT Objective: To investigate the effect of externally applied cyclical (vibratory) forces on the rate of tooth movement, the structural integrity of the periodontal ligament, and alveolar bone remodeling. Methods: Twenty-six female Sprague-Dawley rats (7 weeks old) were divided into four groups: CTRL (unloaded), VBO (molars receiving a vibratory stimulus only), TMO (molars receiving an orthodontic spring only), and TMO+VB (molars receiving an orthodontic spring and the additional vibratory stimulus). In TMO and TMO+VB groups, the rat first molars were moved mesially for 2 weeks using Nickel-Titanium coil spring delivering 25 g of force. In VBO and TMO+VB groups, cyclical forces at 0.4 N and 30 Hz were applied occlusally twice a week for 10 minutes. Microfocus X-ray computed tomography analysis and tooth movement measurements were performed on the dissected rat maxillae. Tartrate-resistant acid phosphatase staining and collagen fiber assessment were performed on histological sections. Results: Cyclical forces significantly inhibited the amount of tooth movement. Histological analysis showed marked disorganization of the collagen fibril structure of the periodontal ligament during tooth movement. Tooth movement caused a significant increase in osteoclast parameters on the compression side of alveolar bone and a significant decrease in bone volume fraction in the molar region compared to controls. Conclusions: Tooth movement was significantly inhibited by application of cyclical forces.


2021 ◽  
Author(s):  
Hyeran Helen Jeon ◽  
Chia-Ying Yang ◽  
Min Kyung Shin ◽  
Jingyi Wang ◽  
Juhin Hiren Patel ◽  
...  

ABSTRACT Objectives To investigate the role of NF-κB in osteoblast lineage cells and periodontal ligament (PDL) fibroblasts during orthodontic tooth movement (OTM). Materials and Methods Transgenic mice that expressed a dominant negative mutant of the inhibitor of kB kinase (IKK-DN) with lineage specific expression in osteoblastic cells and PDL fibroblasts driven by a response element in the collagen1α1 promoter and matched wild-type (WT) mice were examined. A 10-12 g force was applied by a NiTi coil and maintained for 5 or 12 days. OTM distance, PDL width, and bone volume fraction were measured using micro computed tomography. Osteoclast numbers were counted in tartrate-resistant acid phosphatase-stained sections. Activation of nuclear factor kappa B (NF-kB) was assessed by nuclear localization of p65, and the receptor activator of nuclear factor-κB ligand (RANKL) was measured by immunofluorescence and compared to control specimens with no orthodontic force. Results OTM-induced NF-kB activation (p65 nuclear localization) in WT mice was largely blocked in transgenic (TG) mice. OTM was significantly reduced in the TG mice compared to WT mice along with reduced osteoclastogenesis, narrower PDL width, higher bone volume fraction, and reduced RANKL expression. Conclusions Osteoblast lineage cells and PDL fibroblasts are key contributors to alveolar bone remodeling in OTM through IKKβ dependent NF-κB activation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Michele Kaplan ◽  
Zana Kalajzic ◽  
Thomas Choi ◽  
Imad Maleeh ◽  
Christopher L. Ricupero ◽  
...  

Abstract Background Orthodontic tooth movement (OTM) has been shown to induce osteocyte apoptosis in alveolar bone shortly after force application. However, how osteocyte apoptosis affects orthodontic tooth movement is unknown. The goal of this study was to assess the effect of inhibition of osteocyte apoptosis on osteoclastogenesis, changes in the alveolar bone density, and the magnitude of OTM using a bisphosphonate analog (IG9402), a drug that affects osteocyte and osteoblast apoptosis but does not affect osteoclasts. Material and methods Two sets of experiments were performed. Experiment 1 was used to specifically evaluate the effect of IG9402 on osteocyte apoptosis in the alveolar bone during 24 h of OTM. For this experiment, twelve mice were divided into two groups: group 1, saline administration + OTM24-h (n=6), and group 2, IG9402 administration + OTM24-h (n=6). The contralateral unloaded sides served as the control. The goal of experiment 2 was to evaluate the role of osteocyte apoptosis on OTM magnitude and osteoclastogenesis 10 days after OTM. Twenty mice were divided into 4 groups: group 1, saline administration without OTM (n=5); group 2, IG9402 administration without OTM (n=5); group 3, saline + OTM10-day (n=6); and group 4, IG9402 + OTM10-day (n=4). For both experiments, tooth movement was achieved using Ultra Light (25g) Sentalloy Closed Coil Springs attached between the first maxillary molar and the central incisor. Linear measurements of tooth movement and alveolar bone density (BVF) were assessed by MicroCT analysis. Cell death (or apoptosis) was assessed by terminal dUTP nick-end labeling (TUNEL) assay, while osteoclast and macrophage formation were assessed by tartrate-resistant acid phosphatase (TRAP) staining and F4/80+ immunostaining. Results We found that IG9402 significantly blocked osteocyte apoptosis in alveolar bone (AB) at 24 h of OTM. At 10 days, IG9402 prevented OTM-induced loss of alveolar bone density and changed the morphology and quality of osteoclasts and macrophages, but did not significantly affect the amount of tooth movement. Conclusion Our study demonstrates that osteocyte apoptosis may play a significant role in osteoclast and macrophage formation during OTM, but does not seem to play a role in the magnitude of orthodontic tooth movement.


2018 ◽  
Vol 88 (5) ◽  
pp. 632-637 ◽  
Author(s):  
Kriangkrai Kraiwattanapong ◽  
Bancha Samruajbenjakun

ABSTRACT Objectives: To investigate the effects of light and heavy forces with corticotomy on tooth movement rate, alveolar bone response, and root resorption in a rat model. Materials and Methods: The right and left sides of 40 male Wistar rats were randomly assigned using the split-mouth design to two groups: light force with corticotomy (LF) and heavy force with corticotomy (HF). Tooth movement was performed on the maxillary first molars using a nickel-titanium closed-coil spring delivering either 10 g (light force) or 50 g (heavy force). Tooth movement and alveolar bone response were assessed by micro–computed tomography (micro-CT) at day 0 as the baseline and on days 7, 14, 21, and 28. Root resorption was examined by histomorphometric analysis at day 28. Results: Micro-CT analysis showed a significantly greater tooth movement in the HF group at days 7 and 14 but no difference in bone volume fraction at any of the observed periods. Histomorphometric analysis found no significant difference in root resorption between the LF and HF groups at day 28. Conclusions: Heavy force with corticotomy increased tooth movement at days 7 and 14 but did not show any difference in alveolar bone change or root resorption.


Sign in / Sign up

Export Citation Format

Share Document