scholarly journals Electrical anatomy of the left atrium during atrial fibrillation

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
P Adragao ◽  
D Nascimento Matos ◽  
F Costa ◽  
P Galvao Santos ◽  
G Rodrigues ◽  
...  

Abstract Introduction Twenty years ago, pulmonary veins (PV) ostia were identified as the left atrium (LA) areas with the shortest refractory period during sinus rhythm. Pulmonary veins isolation (PVI) became standard of care, but clinical results are still suboptimal. Today, a special tool using the Carto® electroanatomical mapping (EAM) allows for AF cycle length mapping (CLM), to identify the areas in the left atria with shortest refractory period, during atrial fibrillation. Using this EAM tool, our study aimed to find the LA areas with the shortest refractory period to better recognize electrical targets for catheter ablation. Methods Retrospective analysis of an unicentric registry of individuals with symptomatic drug-refractory AF who underwent PVI with Carto® EAM. CLM was performed with a high-density mapping Pentaray® catheter before and after PVI and in 4 redo procedures. We assessed areas of short cycle length (SCL) (defined as 120 to 250ms), and their relationships with complex fractionated atrial electrograms (CFAE), and low-voltage zones (from 0.1 to 0.3mV). Results A total of 18 patients (8 men, median age 63 IQR 58–71 years) were included. Most patients presented with persistent AF (n=12, 67%), and 4 patients (22%) had a previous PVI. The mean shortest measured cycle length in AF was 140ms (SD ±27ms). All patients presented areas of SCL located in the PVs or their insertion, 70% in the posterior/roof region adjacent to the left superior pulmonary vein (LSPV) (figure 1) and 60% in the anterior region of the right superior pulmonary vein (RSPV). These two areas remained the fastest even after PVI. The anterior mitral region rarely presented SCL (17%). SCL were related to low-voltage areas in 94% and were adjacent to CFAE. Low-voltage areas and CFAE were more frequent and had a larger LA dispersion than SCL. Conclusion We confirmed in 3D mapping that PVs are the LA zones with shortest refractory period, not only in sinus rhythm but also during AF. The persistence of SCL areas in the border zones of the PVI lines suggest the benefit of a more extensive CLM guided ablation. Larger studies are needed. FUNDunding Acknowledgement Type of funding sources: None. Short cycle length mapping

EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
P Adragao ◽  
D Nascimento Matos ◽  
F Costa ◽  
P Galvao Santos ◽  
G Rodrigues ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Introduction Twenty years ago, pulmonary veins (PV) ostia were identified as the left atrium (LA) areas with the shortest refractory period during sinus rhythm. Pulmonary veins isolation (PVI) became standard of care, but clinical results are still suboptimal. Today, a special tool using the Carto® electroanatomical mapping (EAM) allows for AF cycle length mapping (CLM), to identify the areas in the left atria with shortest refractory period, during atrial fibrillation. Using this EAM tool, our study aimed to find the LA areas with the shortest refractory period to better recognize electrical targets for catheter ablation. Methods Retrospective analysis of an unicentric registry of individuals with symptomatic drug-refractory AF who underwent PVI with Carto® EAM. CLM was performed with a high-density mapping Pentaray® catheter before and after PVI and in 4 redo procedures. We assessed areas of short cycle length (SCL) (defined as 120 to 250ms), and their relationships with complex fractionated atrial electrograms (CFAE), and low-voltage zones (from 0.1 to 0.3mV). Results A total of 18 patients (8 men, median age 63 IQR 58-71 years) were included. Most patients presented with persistent AF (n = 12, 67%), and 4 patients (22%) had a previous PVI. The mean shortest measured cycle length in AF was 140ms (SD ±27ms). All patients presented areas of SCL located in the PVs or their insertion, 70% in the posterior/roof region adjacent to the left superior pulmonary vein (LSPV) (figure 1) and 60% in the anterior region of the right superior pulmonary vein (RSPV). These two areas remained the fastest even after PVI. The anterior mitral region rarely presented SCL (17%). SCL were related to low-voltage areas in 94% and were adjacent to CFAE. Low-voltage areas and CFAE were more frequent and had a larger LA dispersion than SCL. Conclusion   We confirmed in 3D mapping that PVs are the LA zones with shortest refractory period, not only in sinus rhythm but also during AF. The persistence of SCL areas in the border zones of the PVI lines suggest the benefit of a more extensive CLM guided ablation. Larger studies are needed. Abstract Figure 1


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
M. S. Rajeshwari ◽  
Priya Ranganath

Pulmonary veins carry oxygenated blood from the lungs to the left atrium. Variations are quite common in the pattern of drainage. The present study was undertaken to evaluate the incidence of different draining patterns of the right pulmonary veins at the hilum by dissecting the human fixed cadaveric lungs. Clinically, pulmonary veins have been demonstrated to often play an important role in generating atrial fibrillation. Hence, it is important to look into the anatomy of the veins during MR imaging and CT angiography. In 53.8% of cases, the right superior lobar vein and right middle lobar vein were found to be united together to form the right superior pulmonary vein. In contrast to this, in 11.53% of cases, right middle lobar vein united with the right inferior lobar vein to form the right inferior pulmonary vein, while in 26.9% of cases, the right superior lobar vein, right middle lobar vein, and right inferior lobar vein drained separately.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
V Sobota ◽  
A Van Hunnik ◽  
S Zeemering ◽  
G Gatta ◽  
D Opacic ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – EU funding. Main funding source(s): ITN Networks PersonalizeAF: Personalized Therapies for Atrial Fibrillation. A Translational Approach, No. 860974; CATCH ME: Characterizing Atrial fibrillation by Translating its Causes into Health Modifiers in the Elderly, No. 633196; MAESTRIA: Machine Learning and Artificial Intelligence for Early Detection of Stroke and Atrial Fibrillation, No. 965286; AFib-TrainNet: EU Training Network on Novel Targets and Methods in Atrial Fibrillation, No. 675351 Netherlands Heart Foundation: CVON2014-09, RACE V Reappraisal of Atrial Fibrillation: Interaction between hyperCoagulability, Electrical remodeling, and Vascular Destabilization in the Progression of Atrial Fibrillation Background Few studies report on mechanisms leading to termination of atrial fibrillation (AF). Purpose To characterise electrophysiological parameters and conduction patterns during the transition from AF to sinus rhythm under various conditions of AF termination. Methods A retrospective evaluation of 6 goat studies was performed. AF was maintained for 3-4 weeks in 29 animals. Four animals were in SR. Unipolar electrograms were acquired with one 249-electrode array/atrium. Pharmacological termination of AF was evoked by various drugs; AP14145 (n = 5), PA6 (n = 7), XAF-1407 (n = 9) vernakalant (n = 8). In animals with sinus rhythm, AF was acutely induced and terminated spontaneously. Baseline AF and ≤3 recordings of the last 10 seconds preceding AF termination were analysed. Intervals with temporal continuous and periodic activity were distinguished in the recordings. AF cycle length (AFCL), conduction velocity and path length were determined for each interval. Results In total, 85 AF terminations were recorded. Switches between temporal continuous and periodic activity were seen frequently during AF. However, termination of AF was always preceded by a phase of periodic activity (PA). The final phase of PA persisted for a median number of 21 [IQR 10-28] cycles in the left atrium and somewhat shorter in the right atrium, Table 1. This final phase of PA was accompanied by a profound bi-atrial increase of AFCL, conduction velocity and path length and a disappearance of inter-atrial cycle length differences. Equipotent changes were not observed in the preceding PAs. During the final AF beats, the number of wave fronts were low, 1 or 2. Interestingly, 92% of the patterns during the last beats of AF involved the Bachmann’s bundle as main source of atrial conduction. Conclusion AF termination is preceded by an increased organisation of fibrillatory conduction, associated with abrupt prolongation of the path length. Propagation in atrial free walls regularly originated from the Bachmann’s bundle. These findings suggest that AF termination was not a random process but follows common spatiotemporal patterns. Final period of temporal organisation Left atrium Right atrium Final PA start Final PA end Final PA start Final PA end Af cycle length (ms) 163 ± 37 204 ± 50* 146 ± 44 207 ± 49* Conduction velocity (cm/s) 77 ± 15 96 ± 25* 83 ± 20 103 ± 24* Path Length (cm) 12.2 ± 2.7 19.3 ± 6.3* 12.0 ± 4.1 21.2 ± 6.4* Length of final periodic activity (beats) NA 21 [IQR 10-28] NA 15 [IQR 10- 25] Electrophysiological changes during the final period periodic activity (PA). Wilcoxon signed rank test. *p <0.05NA= not available


EP Europace ◽  
2020 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
A P Martin ◽  
M Fowler ◽  
N Lever

Abstract Background Pulmonary vein isolation using cryotherapy is an established treatment for the management of patients with paroxysmal atrial fibrillation. Ablation using the commercially available balloon cryocatheter has been shown to create wide antral pulmonary vein isolation. A novel balloon cryocatheter (BCC) has been designed to maintain uniform pressure and size during ablation, potentially improving contact with the antral anatomy. The extent of ablation created using the novel BCC has not previously been established. Purpose To determine the anatomical extent of pulmonary vein isolation using electroanatomical mapping when performing catheter ablation for paroxysmal atrial fibrillation using the novel BCC. Methods Nine consecutive patients underwent pre-procedure computed tomography angiography of the left atrium to quantify the chamber dimensions. An electroanatomical map was created using the cryoablation system mapping catheter and a high definition mapping system. A bipolar voltage map was obtained following ablation to determine the extent of pulmonary vein isolation ablation. A volumetric technique was used to quantify the extent of vein and posterior wall electrical isolation in addition to traditional techniques for proving entrance and exit block. Results All patients had paroxysmal atrial fibrillation, mean age 56 years, 7 (78%) male. Electrical isolation was achieved for 100% of the pulmonary veins; mean total procedure time was 109 min (+/- 26 SD), and fluoroscopy time 14.9 min (+/- 2.4 SD). The median treatment applications per vein was one (range one - four), and median treatment duration 180 sec (range 180 -240). Left atrial volume 32 mL/m2 (+/- 7 SD), and mean left atrial posterior wall area 22 cm2 (+/- 4 SD). Data was available for quantitative assessment of the extent of ablation for eight patients. No lesions (0 of 32) were ostial in nature. The antral surface area of ablation was not statistically different between the left and right sided pulmonary veins (p 0.63), which were 5.9 (1.6 SD) and 5.4 (2.1 SD) cm2 respectively. In total 50% of the posterior left atrial wall was ablated.  Conclusion Pulmonary vein isolation using a novel BCC provides a wide and antral lesion set. There is significant debulking of the posterior wall of the left atrium. Abstract Figure.


2020 ◽  
Vol 33 (2) ◽  
pp. 106-114
Author(s):  
Michele Brunelli ◽  
Mark Adrian Sammut

Catheter ablation of long-standing persistent atrial fibrillation is not yet clearly defined with respect to endpoints, and different ablative strategies are offered to patients. Presented here is an approach aiming at biatrial debulking in the form of extensive linear ablation, specifically targeting areas of low-voltage complex fractionated electrograms, in addition to pulmonary vein isolation. Its main advantage is that it is not dependent on operator/system variability, since the strategy of isolating the pulmonary veins, superior vena cava and left atrial posterior wall together with achievement of bidirectional block during linear ablation provides objective endpoints that can consistently be reproduced.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shunsuke Kawai ◽  
Yasushi Mukai ◽  
Shujiro Inoue ◽  
Daisuke Yakabe ◽  
Kazuhiro Nagaoka ◽  
...  

EP Europace ◽  
2020 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
A Utyasheva ◽  
I V Abdulyanov ◽  
M A Sungatullin ◽  
I I Vagizov

Abstract Aims   The evaluation of sinus rhythm preservation after surgical treatment of atrial fibrillation by left-atrial RFA in patients with mitral valve prosthetics. Materials and methods  A prospective, randomized study was performed in the interregional clinical and diagnostic center of Kazan in 2011-2018 which were included 136 patients with mitral valve pathology and persistent AF. The average age of patients was 57 ± 5, the gender division was dominated by female patients  and made up 97 (58.4%). All patients underwent either mitral valve prosthesis with mechanical prosthesis Meding-2 which made up 96 (70.5%) or biological prosthesis Carpantier-Edwards which made up 40 (29.4%). Radiofrequency isolation of the left atrium and pulmonary veins was performed by standard procedure by Cox-IV which doesn’t include the right atrium tissue. Results and discussion: In the early post surgical period, recovery of sinus rhythm was observed in 111 (81.6%) patients. Cardiac Pacemaker Implantation was performed in 1 (0.73%) case.  The results of the study were assessed after surgical treatment in 22 ± 5 months, the sinus rhythm was preserved in 99 patients from the study group and made up 72.7%. Conclusion Radiofrequency ablation  the left atrium provides long-term preservation of sinus rhythm in the treatment of patients with atrial fibrillation and mitral valve pathology.


2017 ◽  
Vol 38 (suppl_1) ◽  
Author(s):  
S. Kawai ◽  
Y. Mukai ◽  
S. Inoue ◽  
A. Chishaki ◽  
H. Tsutsui ◽  
...  

Author(s):  
James S. Gammie ◽  
G Kwame Yankey ◽  
Timothy Nolan ◽  
Z. Jon Wu ◽  
Timm Dickfeld ◽  
...  

Objective Clinical experience with endocardial cryoablation for the surgical treatment of atrial fibrillation has demonstrated safety and efficacy. Direct access to the left atrium via a thoracoscopic or pericardial approach with a balloon-tipped cryoablation catheter might facilitate endocardial cryoablation on the beating heart. We investigated the ability of a novel cryoballoon to produce endocardial pulmonary vein ostial cryolesions on the beating heart in a large-animal model. Methods Six sheep underwent small left thoracotomy. A 10.5F catheter with a 23-mm cryoballoon was inserted directly into the left atrium under fluoroscopic and intracardiac echo (ICE) guidance. Cryoablation of the pulmonary vein ostia was performed. Animals were killed at 14 days. Pulmonary venous electrical isolation was assessed immediately before the animals were killed. Results All animals survived balloon cryoablation with no periprocedural complications. Balloon occlusion was well tolerated hemodynamically, with minimal change in blood pressure (–4 ± 6 mm Hg systolic BP) and no change in heart rate. ICE demonstrated an absence of intracardiac air or ice embolization during ablation. Mean balloon temperature was −67 ± 8°C. All animals were neurologically intact after the procedure. Five of 6 (83%) veins exhibited circumferential exit block. Phrenic nerve function was intact in all animals. On gross inspection, all lesions were circumferential and continuous without evidence of endocardial thrombus. Pathology confirmed circumferential transmurality in all treated veins. Conclusions Direct left atrial access cryoballoon ablation was effective for isolating pulmonary veins. This technology may be an important component of a minimally invasive beating heart CryoMaze procedure for the treatment of atrial fibrillation.


Sign in / Sign up

Export Citation Format

Share Document