P6003Coronary artery spasm: a consequence of impaired nitric oxide/hydrogen sulphide signalling?

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Liu ◽  
T H Nguyen ◽  
H Imam ◽  
T Heresztyn ◽  
I Stafford ◽  
...  

Abstract Background Coronary artery spasm (CAS) represents a major cause of patient morbidity, with variable clinical response to prophylaxis with calcium antagonists and generally poor symptomatic relief with organic nitrates. The precipitation of CAS with acetylcholine may reflect impaired nitric oxide (NO) release and/or signalling. We have recently demonstrated that platelets from patients with CAS exhibit markedly impaired anti-aggregatory responses to the NO donor sodium nitroprusside (SNP) (“NO resistance”). Purpose In the current experiments we sought to determine whether N-acetylcysteine (NAC), which is known to potentiate haemodynamic responses to organic nitrates, reverses NO resistance in platelets from CAS patients. Methods Patients with CAS were studied during acute (n=11) and chronic (n=24) phases of symptoms. NAC (10 g/24 hours) was infused together with low dose NTG (2.5 μg/min) in patients presenting with acute exacerbations, and platelets were studied ex vivo. In blood samples taken from chronic CAS patients, in vitro studies were performed to evaluate the possible role of H2S release (via cysteine formation) from NAC in putative potentiation of NO effect. Results (1) In acute patients, NTG/NAC infusion resulted in increases in platelet response to SNP (p=0.003); (2) In vitro studies showed that incubation with NAC or the H2S donor NaHS potentiated SNP responses (Figure 1A); (3) Effects of NAC were reversed by co-incubation with aminooxyacetic acid (AOAA) and D, L-propargylglycine (PAG), inhibitors of enzymatic cysteine bioconversion to release H2S (Figure 1B). Figure 1 Conclusion CAS-associated impairment of platelet NO signaling reflects a deficiency of the H2S/NO interaction, and can be reversed using exogenous H2S donors, including NAC.

2021 ◽  
Vol 139 ◽  
pp. 111678
Author(s):  
Alexandru Sava ◽  
Frederic Buron ◽  
Sylvain Routier ◽  
Alina Panainte ◽  
Nela Bibire ◽  
...  

2011 ◽  
Vol 340 ◽  
pp. 363-368 ◽  
Author(s):  
Xiao Qing Zou ◽  
Yong Lan Ding ◽  
Sheng Ming Peng ◽  
Chang Ping Hu ◽  
Han Wu Deng ◽  
...  

Angiogenesis, the development of new capillaries from pre-existing vessels, requires the coordinate activation of endothelial cells, which migrate and proliferate to form functional vessels. Endothelial dysfunction and decreased nitric oxide bioavailability may underscore the impairment of angiogenesis. As such, the delivery of exogenous NO is an attractive therapeutic option that has been used to therapeutic angiogenesis. In this paper, a novel group of hybrid nitric oxide-releasing chrysin derivatives was synthesized. The results indicated that all these chrysin derivatives exhibited promotion of endothelial migration and tubulogenesis in vitro as well as stimulation angiogenesis in vivo.Furthermore, all compounds released NO upon incubation with phosphate buffer at pH 7.4 and enhanced VEGF secretion and VEGF mRNA expression of endothelial cells. These hybrid ester NO donor prodrugs offer a potential drug design concept for the development of therapeutic or preventive agents for angiogenesis deficiency due to ischemic diseases.


Blood ◽  
1998 ◽  
Vol 91 (11) ◽  
pp. 4311-4320 ◽  
Author(s):  
Katerina Chlichlia ◽  
Marcus E. Peter ◽  
Marian Rocha ◽  
Carsten Scaffidi ◽  
Mariana Bucur ◽  
...  

Abstract Nitric oxide (NO), an important effector molecule involved in immune regulation and host defense, was shown to induce apoptosis in lymphoma cells. In the present report the NO donor glycerol trinitrate was found to induce apoptosis in Jurkat cells that are sensitive to CD95-mediated kill. In contrast, a CD95-resistant Jurkat subclone showed substantial protection from apoptosis after exposure to NO. NO induced mRNA expression of CD95 (APO-1/Fas) and TRAIL/APO-2 ligands. Moreover, NO triggered apoptosis in freshly isolated human leukemic lymphocytes which were also sensitive to anti-CD95 treatment. The ability of NO to induce apoptosis was completely blocked by a broad-spectrum ICE (interleukin-1β converting enzyme)-protease/caspase inhibitor and correlated with FLICE/caspase-8 activation. This activation was abrogated in some neoplastic lymphoid cells but not in others by the inhibitor of protein synthesis cycloheximide. Our results were confirmed using an in vitro experimental model of coculture of human lymphoid target cells with activated bovine endothelial cells generating NO as effectors. Furthermore, the inhibition of endogenous NO production with the inducible NO synthase inhibitor NG-monomethyl-L-arginine caused a complete abrogation of the apoptotic effect. Our data provide evidence that NO-induced apoptosis in human neoplastic lymphoid cells strictly requires activation of caspases, in particular FLICE, the most CD95 receptor-proximal caspase. Depending on the cell line tested this activation required or was independent of the CD95 receptor/ligand system.


Chemosphere ◽  
2019 ◽  
Vol 223 ◽  
pp. 64-73 ◽  
Author(s):  
Dominik Diamandakis ◽  
Elzbieta Zieminska ◽  
Marcin Siwiec ◽  
Krzysztof Tokarski ◽  
Elzbieta Salinska ◽  
...  

2000 ◽  
Vol 83 (05) ◽  
pp. 752-758 ◽  
Author(s):  
Claude Le Feuvre ◽  
Annie Brunet ◽  
Thuc Do Pham ◽  
Jean-Philippe Metzger ◽  
André Vacheron ◽  
...  

SummaryThe 3-morpholinosydnonimine (SIN-1) generates both nitric oxide (NO) and superoxide anion (O2−). It elicits dose-dependent vasodilation in vivo, in spite of the opposite effects of its breakdown products on vascular tone and platelet aggregation.This study was designed to investigate the influence of intravenous SIN-1 injection on platelet Ca2+ handling in patients undergoing coronary angiography. SIN-1 administration reduced cytosolic [Ca2+] in unstimulated platelets by decreasing Ca2+ influx. It attenuated Ca2+ mobilization from internal stores evoked by thrombin or thapsigargin. In vitro studies were used as an approach to investigate how simultaneous productions of NO and O2− from SIN-1 modify thrombin- or thapsigargin-induced platelet Ca2+ mobilization. Superoxide dismutase, the O2− scavenger, enhanced the capacity of SIN-1 to inhibit Ca2+ mobilization but catalase had no effect.This suggests that the effects of SIN-1 on platelet Ca2+ handling resemble those of NO, but are modulated by simultaneous O2− release, independently of H2O2 formation.


2012 ◽  
Vol 302 (9) ◽  
pp. L816-L828 ◽  
Author(s):  
Randal O. Dull ◽  
Mark Cluff ◽  
Joseph Kingston ◽  
Denzil Hill ◽  
Haiyan Chen ◽  
...  

Lung endothelial cells respond to changes in vascular pressure through mechanotransduction pathways that alter barrier function via non-Starling mechanism(s). Components of the endothelial glycocalyx have been shown to participate in mechanotransduction in vitro and in systemic vessels, but the glycocalyx's role in mechanosensing and pulmonary barrier function has not been characterized. Mechanotransduction pathways may represent novel targets for therapeutic intervention during states of elevated pulmonary pressure such as acute heart failure, fluid overload, and mechanical ventilation. Our objective was to assess the effects of increasing vascular pressure on whole lung filtration coefficient ( Kfc) and characterize the role of endothelial heparan sulfates in mediating mechanotransduction and associated increases in Kfc. Isolated perfused rat lung preparation was used to measure Kfc in response to changes in vascular pressure in combination with superimposed changes in airway pressure. The roles of heparan sulfates, nitric oxide, and reactive oxygen species were investigated. Increases in capillary pressure altered Kfc in a nonlinear relationship, suggesting non-Starling mechanism(s). nitro-l-arginine methyl ester and heparanase III attenuated the effects of increased capillary pressure on Kfc, demonstrating active mechanotransduction leading to barrier dysfunction. The nitric oxide (NO) donor S-nitrosoglutathione exacerbated pressure-mediated increase in Kfc. Ventilation strategies altered lung NO concentration and the Kfc response to increases in vascular pressure. This is the first study to demonstrate a role for the glycocalyx in whole lung mechanotransduction and has important implications in understanding the regulation of vascular permeability in the context of vascular pressure, fluid status, and ventilation strategies.


Author(s):  
Anna L. Gharibyan ◽  
Dina Raveh ◽  
Ludmilla A. Morozova-Roche
Keyword(s):  
Ex Vivo ◽  

2018 ◽  
Author(s):  
Stephanie Antoun ◽  
David Atallah ◽  
Roula Tahtouh ◽  
Malak Moubarak ◽  
Nada Alaeddine ◽  
...  

Nitric Oxide ◽  
2020 ◽  
Vol 94 ◽  
pp. 108-113 ◽  
Author(s):  
Milena T. Pelegrino ◽  
Richard B. Weller ◽  
André Paganotti ◽  
Amedea B. Seabra

Sign in / Sign up

Export Citation Format

Share Document