scholarly journals Lung heparan sulfates modulate Kfc during increased vascular pressure: evidence for glycocalyx-mediated mechanotransduction

2012 ◽  
Vol 302 (9) ◽  
pp. L816-L828 ◽  
Author(s):  
Randal O. Dull ◽  
Mark Cluff ◽  
Joseph Kingston ◽  
Denzil Hill ◽  
Haiyan Chen ◽  
...  

Lung endothelial cells respond to changes in vascular pressure through mechanotransduction pathways that alter barrier function via non-Starling mechanism(s). Components of the endothelial glycocalyx have been shown to participate in mechanotransduction in vitro and in systemic vessels, but the glycocalyx's role in mechanosensing and pulmonary barrier function has not been characterized. Mechanotransduction pathways may represent novel targets for therapeutic intervention during states of elevated pulmonary pressure such as acute heart failure, fluid overload, and mechanical ventilation. Our objective was to assess the effects of increasing vascular pressure on whole lung filtration coefficient ( Kfc) and characterize the role of endothelial heparan sulfates in mediating mechanotransduction and associated increases in Kfc. Isolated perfused rat lung preparation was used to measure Kfc in response to changes in vascular pressure in combination with superimposed changes in airway pressure. The roles of heparan sulfates, nitric oxide, and reactive oxygen species were investigated. Increases in capillary pressure altered Kfc in a nonlinear relationship, suggesting non-Starling mechanism(s). nitro-l-arginine methyl ester and heparanase III attenuated the effects of increased capillary pressure on Kfc, demonstrating active mechanotransduction leading to barrier dysfunction. The nitric oxide (NO) donor S-nitrosoglutathione exacerbated pressure-mediated increase in Kfc. Ventilation strategies altered lung NO concentration and the Kfc response to increases in vascular pressure. This is the first study to demonstrate a role for the glycocalyx in whole lung mechanotransduction and has important implications in understanding the regulation of vascular permeability in the context of vascular pressure, fluid status, and ventilation strategies.

2007 ◽  
Vol 292 (6) ◽  
pp. L1452-L1458 ◽  
Author(s):  
Randal O. Dull ◽  
Ian Mecham ◽  
Scott McJames

We investigated the nonlinear dynamics of the pressure vs. hydraulic conductivity (Lp) relationship in lung microvascular endothelial cells and demonstrate that heparan sulfates, an important component of the endothelial glycocalyx, participate in pressure-sensitive mechanotransduction that results in barrier dysfunction. The pressure vs. Lp relationship was complex, possessing both time- and pressure-dependent components. Pretreatment of lung capillary endothelial cells with heparanase III completely abolished the pressure-induced increase in Lp. This extends our ( 7 ) previous observation regarding heparan sulfates as mechanotransducers for shear stress. Inhibition of nitric oxide (NO) synthase with l-NAME ( NG-nitro-l-arginine methyl ester HCl) and intracellular scavenging of reactive oxygen species (ROS) by TBAP [tetrakis-(4-benzoic acid) porphorin] significantly attenuated the pressure-induced Lp response. Intracellular NO/ROS were visualized using the fluorescent dye, 2′7′-dichlorofluorescein diacetate (DCFA), and cells demonstrated a pressure-induced increase in intracellular fluorescence. Heparanase pretreatment significantly reduced the pressure-induced increase in intracellular fluorescence, suggesting that cell-surface heparan sulfates directly participate in mechanotransduction that results in NO/ROS production and increased permeability. This is the first report to demonstrate a role for heparan sulfates in pressure-mediated mechanotransduction and barrier regulation. These observations may have important clinical implications during conditions where pulmonary microvascular pressure is elevated.


2011 ◽  
Vol 340 ◽  
pp. 363-368 ◽  
Author(s):  
Xiao Qing Zou ◽  
Yong Lan Ding ◽  
Sheng Ming Peng ◽  
Chang Ping Hu ◽  
Han Wu Deng ◽  
...  

Angiogenesis, the development of new capillaries from pre-existing vessels, requires the coordinate activation of endothelial cells, which migrate and proliferate to form functional vessels. Endothelial dysfunction and decreased nitric oxide bioavailability may underscore the impairment of angiogenesis. As such, the delivery of exogenous NO is an attractive therapeutic option that has been used to therapeutic angiogenesis. In this paper, a novel group of hybrid nitric oxide-releasing chrysin derivatives was synthesized. The results indicated that all these chrysin derivatives exhibited promotion of endothelial migration and tubulogenesis in vitro as well as stimulation angiogenesis in vivo.Furthermore, all compounds released NO upon incubation with phosphate buffer at pH 7.4 and enhanced VEGF secretion and VEGF mRNA expression of endothelial cells. These hybrid ester NO donor prodrugs offer a potential drug design concept for the development of therapeutic or preventive agents for angiogenesis deficiency due to ischemic diseases.


Author(s):  
Bo-Wen Xu ◽  
Zhi-Qiang Cheng ◽  
Xu-Ting Zhi ◽  
Xiao-Mei Yang ◽  
Zhi-Bo Yan

Abstract Endothelial barrier integrity requires recycling of VE-cadherin to adherens junctions. Both p18 and Rab11a play significant roles in VE-cadherin recycling. However, the underlying mechanism and the role of p18 in activating Rab11a have yet to be elucidated. Performing in vitro and in vivo experiments, we showed that p18 protein bound to VE-cadherin before Rab11a through its VE-cadherin-binding domain (aa 1–39). Transendothelial resistance showed that overexpression of p18 promoted the circulation of VE-cadherin to adherens junctions and the recovery of the endothelial barrier. Silencing of p18 caused endothelial barrier dysfunction and prevented Rab11a-positive recycling endosome accumulation in the perinuclear recycling compartments. Furthermore, p18 knockdown in pulmonary microvessels markedly increased vascular leakage in mice challenged with lipopolysaccharide and cecal ligation puncture. This study showed that p18 regulated the pulmonary endothelial barrier function in vitro and in vivo by regulating the binding of Rab11a to VE-cadherin and the activation of Rab11a.


2013 ◽  
Vol 304 (5) ◽  
pp. G479-G489 ◽  
Author(s):  
Katherine R. Groschwitz ◽  
David Wu ◽  
Heather Osterfeld ◽  
Richard Ahrens ◽  
Simon P. Hogan

Mast cells regulate intestinal barrier function during disease and homeostasis. Secretion of the mast cell-specific serine protease chymase regulates homeostasis. In the present study, we employ in vitro model systems to delineate the molecular pathways involved in chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal epithelial (Caco-2 BBe) cell monolayers induced a significant reduction in transepithelial resistance, indicating decreased intestinal epithelial barrier function. The chymase-induced intestinal epithelial barrier dysfunction was characterized by chymase-induced protease-activated receptor (PAR)-2 activation and matrix metalloproteinase (MMP)-2 expression and activation. Consistent with this observation, in vitro analysis revealed chymase-induced PAR-2 activation and increased MAPK activity and MMP-2 expression. Pharmacological and small interfering RNA-mediated antagonism of PAR-2 and MMP-2 significantly attenuated chymase-stimulated barrier dysfunction. Additionally, the chymase/MMP-2-mediated intestinal epithelial dysfunction was associated with a significant reduction in the tight junction protein claudin-5, which was partially restored by MMP-2 inhibition. Finally, incubation of Caco-2 BBe cells with chymase-sufficient, but not chymase-deficient, bone marrow-derived mast cells decreased barrier function, which was attenuated by the chymase inhibitor chymostatin. Collectively, these results suggest that mast cell/chymase-mediated intestinal epithelial barrier function is mediated by PAR-2/MMP-2-dependent pathways.


1997 ◽  
Vol 273 (1) ◽  
pp. L31-L39 ◽  
Author(s):  
W. N. Campbell ◽  
M. Fitzpatrick ◽  
X. Ding ◽  
M. Jett ◽  
P. Gemski ◽  
...  

We studied whether Staphylococcal enterotoxin B (SEB) has direct effects on endothelial cells (EC) in the absence of effector cells or their products. Bovine or human pulmonary artery EC were grown to confluence on filters mounted in chemotaxis chambers. Barrier function was assessed by placing [14C]bovine serum albumin in the chamber and sampling the lower well for 14C activity. SEB exposures induced a significant (P < 0.001) dose- and time-dependent increase in albumin flux across both bovine and human EC monolayers. Albumin flux was temperature dependent, and cycloheximide pretreatment of the monolayers did not block the SEB-induced increase in permeability. Preincubation of SEB with trypsin or anti-SEB antibody significantly (P < 0.0001) reduced the effect, whereas pretreatment with polymyxin B did not. SEB at > or = 10 micrograms/ml significantly (P < 0.03) increased EC injury as measured by 51Cr release in a dose- and time-dependent manner. Herbimycin and genistein, inhibitors of protein tyrosine kinases, each protected against SEB-induced cytotoxicity, barrier dysfunction, and intercellular gap formation. We conclude that SEB perturbs endothelial barrier function and viability in the absence of effector cells or their mediators.


Blood ◽  
1998 ◽  
Vol 91 (11) ◽  
pp. 4311-4320 ◽  
Author(s):  
Katerina Chlichlia ◽  
Marcus E. Peter ◽  
Marian Rocha ◽  
Carsten Scaffidi ◽  
Mariana Bucur ◽  
...  

Abstract Nitric oxide (NO), an important effector molecule involved in immune regulation and host defense, was shown to induce apoptosis in lymphoma cells. In the present report the NO donor glycerol trinitrate was found to induce apoptosis in Jurkat cells that are sensitive to CD95-mediated kill. In contrast, a CD95-resistant Jurkat subclone showed substantial protection from apoptosis after exposure to NO. NO induced mRNA expression of CD95 (APO-1/Fas) and TRAIL/APO-2 ligands. Moreover, NO triggered apoptosis in freshly isolated human leukemic lymphocytes which were also sensitive to anti-CD95 treatment. The ability of NO to induce apoptosis was completely blocked by a broad-spectrum ICE (interleukin-1β converting enzyme)-protease/caspase inhibitor and correlated with FLICE/caspase-8 activation. This activation was abrogated in some neoplastic lymphoid cells but not in others by the inhibitor of protein synthesis cycloheximide. Our results were confirmed using an in vitro experimental model of coculture of human lymphoid target cells with activated bovine endothelial cells generating NO as effectors. Furthermore, the inhibition of endogenous NO production with the inducible NO synthase inhibitor NG-monomethyl-L-arginine caused a complete abrogation of the apoptotic effect. Our data provide evidence that NO-induced apoptosis in human neoplastic lymphoid cells strictly requires activation of caspases, in particular FLICE, the most CD95 receptor-proximal caspase. Depending on the cell line tested this activation required or was independent of the CD95 receptor/ligand system.


2019 ◽  
Vol 30 (5) ◽  
pp. 566-578 ◽  
Author(s):  
Shuling Fan ◽  
Caroline M. Weight ◽  
Anny-Claude Luissint ◽  
Roland S. Hilgarth ◽  
Jennifer C. Brazil ◽  
...  

Junctional adhesion molecule-A (JAM-A), an epithelial tight junction protein, plays an important role in regulating intestinal permeability through association with a scaffold signaling complex containing ZO-2, Afadin, and the small GTPase Rap2. Under inflammatory conditions, we report that the cytoplasmic tail of JAM-A is tyrosine phosphorylated (p-Y280) in association with loss of barrier function. While barely detectable Y280 phosphorylation was observed in confluent monolayers of human intestinal epithelial cells under basal conditions, exposure to cytokines TNFα, IFNγ, IL-22, or IL-17A, resulted in compromised barrier function in parallel with increased p-Y280. Phosphorylation was Src kinase dependent, and we identified Yes-1 and PTPN13 as a major kinase and phosphatase for p-JAM-A Y280, respectively. Moreover, cytokines IL-22 or IL-17A induced increased activity of Yes-1. Furthermore, the Src kinase inhibitor PP2 rescued cytokine-induced epithelial barrier defects and inhibited phosphorylation of JAM-A Y280 in vitro. Phosphorylation of JAM-A Y280 and increased permeability correlated with reduced JAM-A association with active Rap2. Finally, we observed increased phosphorylation of Y280 in colonic epithelium of individuals with ulcerative colitis and in mice with experimentally induced colitis. These findings support a novel mechanism by which tyrosine phosphorylation of JAM-A Y280 regulates epithelial barrier function during inflammation.


2003 ◽  
Vol 284 (5) ◽  
pp. C1140-C1148 ◽  
Author(s):  
Richard Weller ◽  
Ann Schwentker ◽  
Timothy R. Billiar ◽  
Yoram Vodovotz

Nitric oxide (NO) can either prevent or promote apoptosis, depending on cell type. In the present study, we tested the hypothesis that NO suppresses ultraviolet B radiation (UVB)-induced keratinocyte apoptosis both in vitro and in vivo. Irradiation with UVB or addition of the NO synthase (NOS) inhibitor N G-nitro-l-arginine methyl ester (l-NAME) increased apoptosis in the human keratinocyte cell line CCD 1106 KERTr, and apoptosis was greater when the two agents were given in combination. Addition of the chemical NO donor S-nitroso- N-acetyl-penicillamine (SNAP) immediately after UVB completely abrogated the rise in apoptosis induced by l-NAME. An adenoviral vector expressing human inducible NOS (AdiNOS) also reduced keratinocyte death after UVB. Caspase-3 activity, an indicator of apoptosis, doubled in keratinocytes incubated with l-NAME compared with the inactive isomer, d-NAME, and was reduced by SNAP. Apoptosis was also increased on addition of 1,H-[1,2,4]oxadiazolo[4,3- a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase. Mice null for endothelial NOS (eNOS) exhibited significantly higher apoptosis than wild-type mice both in the dermis and epidermis, whereas mice null for inducible NOS (iNOS) exhibited more apoptosis than wild-type mice only in the dermis. These results demonstrate an antiapoptotic role for NO in keratinocytes, mediated by cGMP, and indicate an antiapoptotic role for both eNOS and iNOS in skin damage induced by UVB.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Cuiping Ye ◽  
Chaowen Huang ◽  
Mengchen Zou ◽  
Yahui Hu ◽  
Lishan Luo ◽  
...  

Abstract Background The dysfunction of airway epithelial barrier is closely related to the pathogenesis of asthma. Secreted Hsp90α participates in inflammation and Hsp90 inhibitor protects endothelial dysfunction. In the current study, we aimed to explore the role of secreted Hsp90α in asthmatic airway epithelial barrier function. Methods Male BALB/c mice were sensitized and challenged with HDM to generate asthma model. The 16HBE and Hsp90α-knockdown cells were cultured and treated according to the experiment requirements. Transepithelial Electric Resistance (TEER) and permeability of epithelial layer in vitro, distribution and expression of junction proteins both in vivo and in vitro were used to evaluate the epithelial barrier function. Western Blot was used to evaluate the expression of junction proteins and phosphorylated AKT in cells and lung tissues while ELISA were used to evaluate the Hsp90α expression and cytokines release in the lung homogenate. Results HDM resulted in a dysfunction of airway epithelial barrier both in vivo and in vitro, paralleled with the increased expression and release of Hsp90α. All of which were rescued in Hsp90α-knockdown cells or co-administration of 1G6-D7. Furthermore, either 1G6-D7 or PI3K inhibitor LY294002 suppressed the significant phosphorylation of AKT, which caused by secreted and recombinant Hsp90α, resulting in the restoration of epithelial barrier function. Conclusions Secreted Hsp90α medicates HDM-induced asthmatic airway epithelial barrier dysfunction via PI3K/AKT pathway, indicating that anti-secreted Hsp90α therapy might be a potential treatment to asthma in future.


2011 ◽  
Vol 301 (3) ◽  
pp. H803-H812 ◽  
Author(s):  
Anne R. Diers ◽  
Katarzyna A. Broniowska ◽  
Victor M. Darley-Usmar ◽  
Neil Hogg

S-nitrosation of thiols in key proteins in cell signaling pathways is thought to be an important contributor to nitric oxide (NO)-dependent control of vascular (patho)physiology. Multiple metabolic enzymes are targets of both NO and S-nitrosation, including those involved in glycolysis and oxidative phosphorylation. Thus it is important to understand how these metabolic pathways are integrated by NO-dependent mechanisms. Here, we compared the effects of NO and S-nitrosation on both glycolysis and oxidative phosphorylation in bovine aortic endothelial cells using extracellular flux technology to determine common and unique points of regulation. The compound S-nitroso-l-cysteine (l-CysNO) was used to initiate intracellular S-nitrosation since it is transported into cells and results in stable S-nitrosation in vitro. Its effects were compared with the NO donor DetaNONOate (DetaNO). DetaNO treatment caused only a decrease in the reserve respiratory capacity; however, l-CysNO impaired both this parameter and basal respiration in a concentration-dependent manner. In addition, DetaNO stimulated extracellular acidification rate (ECAR), a surrogate marker of glycolysis, whereas l-CysNO stimulated ECAR at low concentrations and inhibited it at higher concentrations. Moreover, a temporal relationship between NO- and S-nitrosation-mediated effects on metabolism was identified, whereby NO caused a rapid impairment in mitochondrial function, which was eventually overwhelmed by S-nitrosation-dependent processes. Taken together, these results suggest that severe pharmacological nitrosative stress may differentially regulate metabolic pathways through both intracellular S-nitrosation and NO-dependent mechanisms. Moreover, these data provide insight into the role of NO and related compounds in vascular (patho)physiology.


Sign in / Sign up

Export Citation Format

Share Document