scholarly journals Insights into electrophysiological mechanisms of atrial fibrillation propagation using simultaneous bi-atrial mapping

EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
M Pope ◽  
P Kuklik ◽  
A Banerjee ◽  
A Briosa E Gala ◽  
M Leo ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public hospital(s). Main funding source(s): Oxford Biomedical Research Centre Introduction Early evidence of pulmonary vein triggers initiating AF has led to focus on the left atrium (LA). Little work has been done to characterise the role of the right atrium (RA) in AF maintenance. Purpose To characterise the relative roles of the LA and RA in maintenance of atrial fibrillation and explore mechanisms of AF propagation. Methods Simultaneous bi-atrial mapping was carried out in patients undergoing first time catheter ablation using 2 linked non-contact charge density mapping systems to obtain 30-second recordings during AF. The predominant channel of communication between chambers was identified and the time difference across this channel measured (see figure). The proportion of signals earlier in each chamber was calculated and a dominant chamber identified if preceding the opposite chamber for ≥60% of the recording. AF was characterised in each chamber according to frequency of specific propagation patterns (localised rotational activation (LRA) and focal firing (FF)). The difference in AF characteristics in the LA and RA according to acute procedural outcome (termination with ablation vs. DCCV) was measured using 2-way ANOVA and predictors of AF termination identified using binomial logistic regression. Results Twenty-one patients were included (16 persistent AF, 5 paroxysmal AF, 11 in sinus rhythm at baseline) with 41 maps obtained prior to ablation. A dominant chamber was identified in 11 maps (in 9 patients). Of these, 5 maps (in 4 patients) were LA dominant, and 6 maps (in 5 patients) were RA dominant. The remainder showed balanced interatrial propagation. For patients with persistent AF, in the RA, those needing DCCV had more LRA than those with termination with ablation (79 activations, (95% CI 65-93) vs. 51 (30-71); p = 0.025). There was no difference in the LA in the two groups (77 vs 59, p = 0.541). There were fewer FFs in the RA vs LA in patients needing DCCV (123 (106-140) vs. 155 (137-172), p = 0.012)(see panel F). No differences in distribution of LIA were observed. The frequency of LRA (p = 0.003) and FF (p = 0.004) in the RA, and RA AFCL (p = 0.041), were predictors of acute procedural outcome. Conclusions Our novel approach of simultaneous bi-atrial mapping revealed that mechanisms responsible for AF maintenance were evenly distributed between atria whilst acute AF termination with left atrial ablation was dependent on the contribution of right atrial substrate. Strategies incorporating right atrial mechanisms may result in improved outcomes from AF ablation. Abstract Figure.

EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
M Pope ◽  
P Kuklik ◽  
A Briosa E Gala ◽  
M Leo ◽  
J Paisey ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public hospital(s). Main funding source(s): Oxford Biomedical Research Centre Introduction Non-contact charge density mapping allows visualisation of whole chamber propagation during atrial fibrillation (AF). The identification of regions with repetitive or, conversely, more complex patterns of wavefront propagation may provide clues to mechanisms responsible for AF maintenance and lead to improved outcomes from catheter ablation. Our novel mapping approach based on signal recurrence plots has never been applied to whole chamber, bi-atrial recording of atrial fibrillation. Purpose To apply recurrence analysis to characterise whole chamber bi-atrial AF propagation. Methods Non-contact dipole signals from left and right atrial maps were obtained during simultaneous bi-atrial charge density mapping of AF. Signals were converted to phase and mean phase coherence calculated for the generation of recurrence distance matrices for the whole chamber and each anatomical region (6x LA and 4x RA) over the 30-second recording duration, where a value of 1 (purple, see figure panel A) represents uniform repetitive conduction, and 0 (red), irregular, non-repetitive activity. Whole chamber and regional mean recurrence values were calculated and correlated with the frequency of wavefronts of localised irregular activation patterns. Results Maps were obtained prior to ablation in 21 patients (5 paroxysmal (pAF), 16 persistent AF (persAF)) undergoing de-novo catheter ablation procedures. Whole chamber recurrence was higher in patients with pAF (0.40 ± 0.08) than persAF (0.34 ± 0.05), p < 0.0005. There was an inverse correlation between regional recurrence values and the number of localised irregular activations detected (-0.7021, p < 0.0005, figure panel B) with the lateral LA and anterior RA demonstrating the highest recurrence values in each chamber (figure panel C). Conclusion Use of recurrence distance matrices characterises global AF propagation phenotypes. Regional values are inversely correlated with the frequency of localised irregular activation patterns identified demonstrating an anatomic dependence in the level of AF propagation complexity, greatest in the anterior LA and septal RA. Comparison of strategies targeting regions with maximal vs. minimal values during catheter ablation may define an optimal approach to treatment of persistent AF. Abstract Figure. Recurrence abstract figure


EP Europace ◽  
2020 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
M Pope ◽  
P Kuklik ◽  
A Briosa E Gala ◽  
MICHAEL Mahmoudi ◽  
J O H N Paisey ◽  
...  

Abstract Introduction Interatrial propagation has been widely studied in anatomical specimens and electrophysiological studies during sinus rhythm or pacing. However, pathways of conduction during atrial fibrillation (AF) are poorly characterised in vivo. Purpose We sought to develop a method of identifying the dominant channel of communication between atria during AF with a view to characterising the role of localised mechanisms in maintaining AF between both chambers. Methods 10 patients undergoing simultaneous bi-atrial non-contact charge density mapping before and following pulmonary vein isolation (PVI) were analysed. Simultaneous 30s recordings during AF were obtained. Virtual electrograms from every vertex of the reconstructed left and right atrial (LA, RA) anatomies were exported and phase calculated using a method of sinusoidal recomposition and Hilbert transform. For each vertex, coherence between a sequence of activations between this point and every other point on the opposing chamber was calculated using mean phase coherence (MPC). The maximum of all MPC values was assigned to this local point to estimate the degree of coherence between activity at a given point and the entire opposing chamber. The regions with highest MPC value represent the channel of communication. Each activation of this zone is then evaluated and difference in local activation time between LA and RA determined (figure). Communication between atria is determined where a normal distribution of timing shift within this channel can be demonstrated (as opposed to a uniform histogram in the case of a lack of any correlation between electrograms). If seen to be preceding the opposite chamber for ≥60% of the recording then the chamber was deemed to be leading. Results A total of 18 maps were obtained (pre-PVI only in 2). A clear channel of interatrial propagation could be seen in 17 maps (MPC value 0.48 ± 0.16) with communication within this channel demonstrated in 13 of these (MPC 0.52 ± 0.16). In the RA the most common site was in the posterior inter-caval zone (in 13) and on the posterior septum of the LA (in 14). The LA was leading in 4 maps and the RA in 2 with balanced propagation in 7. Conclusion The method of average MPC identifies channels of inter-atrial communication during AF which appear to predominantly involve posterior interatrial connections. Further application of this technique to characterise interatrial propagation may help to define patient specific phenotypes of AF and guide targeted therapy. Abstract Figure 1


2020 ◽  
Author(s):  
Markus Rottmann ◽  
Anna Pfenniger ◽  
Shin Yoo ◽  
David Johnson ◽  
Gail Elizabeth Geist ◽  
...  

Background: We performed high-density mapping of persistent atrial fibrillation (AF) in animals and patients (1) to test that AF is due to greater than or equal 1 reentry, and (2) to characterize activation delay and reentries pre/ post pulmonary vein isolation (PVI). We determined electrophysiological characteristics that may predispose to the induction, maintenance, and reduction of AF. Methods and Results: This study includes 48 dogs and nine patients. 43 AF- and five sinus/ paced rhythm dogs (3-14 weeks rapid atrial pacing) were studied at open chest surgery with 117 epicardial electrograms (EGMs) (2.5mm dist.) in 6 bi-atrial regions. Rotational activity automatically detected with a new algorithm tracking the earliest and latest activation in all regions (5+/-2 per region) were stable over 424+/-505ms [120-4940ms]. Reentry stability was highest in the right atrial appendage (RAA) (405+/-219ms) and the posterior left atrium (PLA) (267+/-115ms) and anchored between >=3 zones of activation delay (15+/-5ms, median 13ms) defined as >10ms per 2.5mm. Cycle length (CL) and degree of focal fibrosis were highest in the PLA and left atrial free wall (LAFW) with 94+/-7ms, 96+/-5ms, and 49+/-14%, 47+/-19%. Fiber crossing density correlated with the stability of rotational activity (R=0.6, P<0.05). Activation delay was 2x higher in AF compared to sinus rhythm/paced rhythm (interval 200-500ms). Activation delay zones > 10ms were at the same locations, but increased 4x during AF vs. SR and were located at fiber crossings, fibrosis/ fat zones. Stability of rotational activity correlated with Organization Index (OI), Fraction Index (FI), Shannon's Entropy (ShEn), and CL (R>0.5, p< 0.0001). PVI in five hearts increased CL [2-14%] and reduced stability of rotational activity in nearly all regions remote to the pulmonary veins (PVs). Also in the clinical evaluation in nine patients using the HD-catheter (16 electrodes, 3mm dist.) activation delay at the reentrant trajectory was 2x higher at edges with maximal delay (20.5+/-8.1ms, median 19.6ms) vs (9.3+/-8.8ms, median 9.2ms) and 1.4 x higher during AF (13.0+/-18.7ms, median 7.2ms) compared to SR/ CS-pacing (18.0+/-11.6ms, median 17.7ms). Conclusion: Rotational activities in all bi-atrial regions anchored between small frequency-dependent activation delay zones in AF. PVI led to beneficial remodeling in bi-atrial regions remote to the PVs. These data may identify a new paradigm for persistent AF.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A Smoczynska ◽  
H.D.M Beekman ◽  
R.W Chui ◽  
S Rajamani ◽  
M.A Vos

Abstract Background Atrial fibrillation (AF) is the most common cardiac arrhythmia treated in clinical practice. Structural remodeling is characterized by atrial enlargement and contributes to the therapeutic resistance in patients with long-standing AF. Purpose To study the atrial arrhythmogenic and echocardiographic consequences induced by volume overload in the complete chronic atrioventricular block (CAVB) dog. Methods Echocardiographic and electrophysiological data was obtained in 14 anaesthetized Mongrel dogs, in acute AV-block (AAVB), after 6 weeks of CAVB (CAVB6) and CAVB10. Left atrial (LA) volume was determined with 2D echocardiography by using the biplane method. An electrocardiogram and monophasic action potentials (MAP) at the right atrial (RA) free wall were recorded. Atrial effective refractory period (AERP) was determined by continuous programmed electrical stimulation (PES) of 20 beats with a cycle length of 400 ms and an extrastimulus with decremental design until refractoriness was reached. A continuous PES protocol of 20 beats with an extrastimulus 5 ms longer than the AERP was applied for 150 seconds to trigger AF. After 5 min without arrhythmias, autonomic neuromodulation was performed by intravenous infusion (IV) of acetylcholine (1,5μg/kg/min to 6,0μg/kg/min) for 20 min followed by prompt IV infusion of isoprenaline (3μg/min) until the atrial heart rate increased by 20 bpm. PES with an extrastimulus was repeated for 150 seconds to induce AF. Results LA volume increased from 13.7±3.2 ml at AAVB to 20.5±5.9 ml* at CAVB6, and 22.7±6.0 ml* at CAVB10 (Fig. 1A). AERP was similar at AAVB, CAVB6, and CAVB10 (115.8±11.9, 117.3±11.7, and 106.8±12.1 ms respectively). Repetitive AF paroxysms of &gt;10 seconds were induced in 1/14 (7%) dogs at AAVB, 1/11 (9%) at CAVB6, and 5/10 (50%)* at CAVB10 (*p&lt;0.05) upon PES (Fig. 1B). Combined neuromodulation and PES did not increase the AF inducibility rate, but prolonged the longest episode of AF in the inducible dogs from 55±49 seconds to 236±202 seconds* at CAVB10 (Fig. 1C). LA volume was higher in inducible dogs 25.0±4.9 ml compared to 18.4±4.2 ml in non-inducible dogs at CAVB10. Conclusion Sustained atrial dilation forms a substrate for repetitive paroxysms of AF. Neuro-modulation prolongs AF episode duration in susceptible dogs. This animal model can be used to study structural remodeling of the atria and possible therapeutic advances in the management of AF. Figure 1 Funding Acknowledgement Type of funding source: Private company. Main funding source(s): Amgen Research


2020 ◽  
Vol 46 (08) ◽  
pp. 895-907
Author(s):  
Nina D. Anfinogenova ◽  
Oksana Y. Vasiltseva ◽  
Alexander V. Vrublevsky ◽  
Irina N. Vorozhtsova ◽  
Sergey V. Popov ◽  
...  

AbstractPrompt diagnosis of pulmonary embolism (PE) remains challenging, which often results in a delayed or inappropriate treatment of this life-threatening condition. Mobile thrombus in the right cardiac chambers is a neglected cause of PE. It poses an immediate risk to life and is associated with an unfavorable outcome and high mortality. Thrombus residing in the right atrial appendage (RAA) is an underestimated cause of PE, especially in patients with atrial fibrillation. This article reviews achievements and challenges of detection and management of the right atrial thrombus with emphasis on RAA thrombus. The capabilities of transthoracic and transesophageal echocardiography and advantages of three-dimensional and two-dimensional echocardiography are reviewed. Strengths of cardiac magnetic resonance imaging (CMR), computed tomography, and cardiac ventriculography are summarized. We suggest that a targeted search for RAA thrombus is necessary in high-risk patients with PE and atrial fibrillation using transesophageal echocardiography and/or CMR when available independently on the duration of the disease. High-risk patients may also benefit from transthoracic echocardiography with right parasternal approach. The examination of high-risk patients should involve compression ultrasonography of lower extremity veins along with the above-mentioned technologies. Algorithms for RAA thrombus risk assessment and protocols aimed at identification of patients with RAA thrombosis, who will potentially benefit from treatment, are warranted. The development of treatment protocols specific for the diverse populations of patients with right cardiac thrombosis is important.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Natasja de Groot ◽  
Lisette vd Does ◽  
Ameeta Yaksh ◽  
Paul Knops ◽  
Pieter Woestijne ◽  
...  

Introduction: Transition of paroxysmal to longstanding persistent atrial fibrillation (LsPAF) is associated with progressive longitudinal dissociation in conduction and a higher incidence of focal fibrillation waves. The aim of this study was to provide direct evidence that the substrate of LsPAF consists of an electrical double-layer of dissociated waves, and that focal fibrillation waves are caused by endo-epicardial breakthrough. Hypothesis: LsPAF in humans is caused by electrical dissociation of the endo- and epicardial layer. Methods: Intra-operative mapping of the endo- and epicardial right atrial wall was performed in 9 patients with induced (N=4), paroxysmal (N=1), persistent (N=2) or longstanding-persistent AF (N=2). A clamp of two rectangular electrode-arrays (128 electrodes; inter-electrode distance 2mm) was introduced through an incision in the right atrial appendage. Series of 10 seconds of AF were analyzed and the incidence of endo-epicardial dissociation (≥15ms) was determined for all 128 endo-epicardial recording sites. Results: In patients with LsPAF the averaged degree of endo-epicardial dissociation was highest (24.9% vs. 5.9%). Using strict criteria for breakthrough (presence of an opposite wave within 4mm and <15ms before the origin of the focal wave), the far majority (77%) of all focal fibrillation waves could be attributed to endo-epicardial excitation. Conclusions: During LsPAF considerable differences in activation of the right endo- and epicardial wall exist. Endo-epicardial fibrillation waves that are out of phase, may conduct transmurally and create breakthrough waves in the opposite layer. This may explain the high persistence of AF and the low succes rate of ablative therapies in patients with LsPAF.


2017 ◽  
Vol 44 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Zhengyu Bao ◽  
Hongwu Chen ◽  
Bing Yang ◽  
Michael Shehata ◽  
Weizhu Ju ◽  
...  

The efficacy of pulmonary vein antral isolation for patients with prolonged sinus pauses (PSP) on termination of atrial fibrillation has been reported. We studied the right atrial (RA) electrophysiologic and electroanatomic characteristics in such patients. Forty patients underwent electroanatomic mapping of the RA: 13 had PSP (group A), 13 had no PSP (group B), and 14 had paroxysmal supraventricular tachycardia (control group C). Group A had longer P-wave durations in lead II than did groups B and C (115.5 ± 15.4 vs 99.5 ± 10.9 vs 96.5 ± 10.4 ms; P=0.001), and RA activation times (106.8 ± 13.8 vs 99 ± 8.7 vs 94.5 ± 9.1 s; P=0.02). Group A's PP intervals were longer during adenosine triphosphate testing before ablation (4.6 ± 2.3 vs 1.7 ± 0.6 vs 1.5 ± 1 s; P &lt;0.001) and after ablation (4.7 ± 2.5 vs 2.2 ± 1.4 vs 1.6 ± 0.8 s; P &lt;0.001), and group A had more complex electrograms (11.4% ± 5.4% vs 9.3% ± 1.6% vs 5.8% ± 1.6%; P &lt;0.001). Compared with group C, group A had significantly longer corrected sinus node recovery times at a 400-ms pacing cycle length after ablation, larger RA volumes (100.1 ± 23.1 vs 83 ± 22.1 mL; P=0.04), and lower conduction velocities in the high posterior (0.87 ± 0.13 vs 1.02 ± 0.21 mm/ms; P=0.02) and high lateral RA (0.89 ± 0.2 vs 1.1 ± 0.35 mm/ms; P=0.04). We found that patients with PSP upon termination of atrial fibrillation have RA electrophysiologic and electroanatomic abnormalities that warrant post-ablation monitoring.


Sign in / Sign up

Export Citation Format

Share Document