scholarly journals AI detection of M. Tuberculosis pathogens using Generative Adversarial Network (GAN) analyses

2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
M Dedicatoria ◽  
S Klaus ◽  
R Case ◽  
S Na ◽  
E Ludwick ◽  
...  

Abstract Background Rapid identification of pathogens is critical to outbreak detection and sentinel surveillance; however most diagnoses are made in laboratory settings. Advancements in artificial intelligence (AI) and computer vision offer unprecedented opportunities to facilitate detection and reduce response time in field settings. An initial step is the creation of analysis algorithms for offline mobile computing applications. Methods AI models to identify objects using computer vision are typically “trained” on previously labeled images. The scarcity of labeled image-libraries creates a bottleneck, requiring thousands of labor hours to annotate images by hand to create “training data.” We describe the applicability of Generative Adversarial Network (GAN) methods to amass sufficient training data with minimal manual input. Results Our AI models are built with a performance score of 0.84-0.93 for M. Tuberculosis, a measure of the AI model's accuracy using precision and recall. Our results demonstrate that our GAN pipeline boosts model robustness and learnability of sparse open source data. Conclusions The use of labeled training data to identify M. Tuberculosis developed using our GAN pipeline techniques demonstrates the potential for rapid identification of known pathogens in field settings. Our work paves the way for the development of offline mobile computing applications to identify pathogens outside of a laboratory setting. Advancements in artificial intelligence (AI) and computer vision offer unprecedented opportunities to decrease detection time in field settings by combining these technologies. Further development of these capabilities can improve time-to-detection and outbreak response significantly. Key messages Rapidly deploy AI detectors to aid in disease outbreak and surveillance. Our concept aligns with deploying responsive alerting capabilities to address dynamic threats in low resource, offline computing environs.

Author(s):  
Annapoorani Gopal ◽  
Lathaselvi Gandhimaruthian ◽  
Javid Ali

The Deep Neural Networks have gained prominence in the biomedical domain, becoming the most commonly used networks after machine learning technology. Mammograms can be used to detect breast cancers with high precision with the help of Convolutional Neural Network (CNN) which is deep learning technology. An exhaustive labeled data is required to train the CNN from scratch. This can be overcome by deploying Generative Adversarial Network (GAN) which comparatively needs lesser training data during a mammogram screening. In the proposed study, the application of GANs in estimating breast density, high-resolution mammogram synthesis for clustered microcalcification analysis, effective segmentation of breast tumor, analysis of the shape of breast tumor, extraction of features and augmentation of the image during mammogram classification have been extensively reviewed.


Author(s):  
Xinyi Li ◽  
Liqiong Chang ◽  
Fangfang Song ◽  
Ju Wang ◽  
Xiaojiang Chen ◽  
...  

This paper focuses on a fundamental question in Wi-Fi-based gesture recognition: "Can we use the knowledge learned from some users to perform gesture recognition for others?". This problem is also known as cross-target recognition. It arises in many practical deployments of Wi-Fi-based gesture recognition where it is prohibitively expensive to collect training data from every single user. We present CrossGR, a low-cost cross-target gesture recognition system. As a departure from existing approaches, CrossGR does not require prior knowledge (such as who is currently performing a gesture) of the target user. Instead, CrossGR employs a deep neural network to extract user-agnostic but gesture-related Wi-Fi signal characteristics to perform gesture recognition. To provide sufficient training data to build an effective deep learning model, CrossGR employs a generative adversarial network to automatically generate many synthetic training data from a small set of real-world examples collected from a small number of users. Such a strategy allows CrossGR to minimize the user involvement and the associated cost in collecting training examples for building an accurate gesture recognition system. We evaluate CrossGR by applying it to perform gesture recognition across 10 users and 15 gestures. Experimental results show that CrossGR achieves an accuracy of over 82.6% (up to 99.75%). We demonstrate that CrossGR delivers comparable recognition accuracy, but uses an order of magnitude less training samples collected from the end-users when compared to state-of-the-art recognition systems.


Author(s):  
Huilin Zhou ◽  
Huimin Zheng ◽  
Qiegen Liu ◽  
Jian Liu ◽  
Yuhao Wang

Abstract Electromagnetic inverse-scattering problems (ISPs) are concerned with determining the properties of an unknown object using measured scattered fields. ISPs are often highly nonlinear, causing the problem to be very difficult to address. In addition, the reconstruction images of different optimization methods are distorted which leads to inaccurate reconstruction results. To alleviate these issues, we propose a new linear model solution of generative adversarial network-based (LM-GAN) inspired by generative adversarial networks (GAN). Two sub-networks are trained alternately in the adversarial framework. A linear deep iterative network as a generative network captures the spatial distribution of the data, and a discriminative network estimates the probability of a sample from the training data. Numerical results validate that LM-GAN has admirable fidelity and accuracy when reconstructing complex scatterers.


2021 ◽  
Vol 263 (2) ◽  
pp. 4558-4564
Author(s):  
Minghong Zhang ◽  
Xinwei Luo

Underwater acoustic target recognition is an important aspect of underwater acoustic research. In recent years, machine learning has been developed continuously, which is widely and effectively applied in underwater acoustic target recognition. In order to acquire good recognition results and reduce the problem of overfitting, Adequate data sets are essential. However, underwater acoustic samples are relatively rare, which has a certain impact on recognition accuracy. In this paper, in addition of the traditional audio data augmentation method, a new method of data augmentation using generative adversarial network is proposed, which uses generator and discriminator to learn the characteristics of underwater acoustic samples, so as to generate reliable underwater acoustic signals to expand the training data set. The expanded data set is input into the deep neural network, and the transfer learning method is applied to further reduce the impact caused by small samples by fixing part of the pre-trained parameters. The experimental results show that the recognition result of this method is better than the general underwater acoustic recognition method, and the effectiveness of this method is verified.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 245
Author(s):  
Konstantinos G. Liakos ◽  
Georgios K. Georgakilas ◽  
Fotis C. Plessas ◽  
Paris Kitsos

A significant problem in the field of hardware security consists of hardware trojan (HT) viruses. The insertion of HTs into a circuit can be applied for each phase of the circuit chain of production. HTs degrade the infected circuit, destroy it or leak encrypted data. Nowadays, efforts are being made to address HTs through machine learning (ML) techniques, mainly for the gate-level netlist (GLN) phase, but there are some restrictions. Specifically, the number and variety of normal and infected circuits that exist through the free public libraries, such as Trust-HUB, are based on the few samples of benchmarks that have been created from circuits large in size. Thus, it is difficult, based on these data, to develop robust ML-based models against HTs. In this paper, we propose a new deep learning (DL) tool named Generative Artificial Intelligence Netlists SynthesIS (GAINESIS). GAINESIS is based on the Wasserstein Conditional Generative Adversarial Network (WCGAN) algorithm and area–power analysis features from the GLN phase and synthesizes new normal and infected circuit samples for this phase. Based on our GAINESIS tool, we synthesized new data sets, different in size, and developed and compared seven ML classifiers. The results demonstrate that our new generated data sets significantly enhance the performance of ML classifiers compared with the initial data set of Trust-HUB.


Author(s):  
S. M. Tilon ◽  
F. Nex ◽  
D. Duarte ◽  
N. Kerle ◽  
G. Vosselman

Abstract. Degradation and damage detection provides essential information to maintenance workers in routine monitoring and to first responders in post-disaster scenarios. Despite advance in Earth Observation (EO), image analysis and deep learning techniques, the quality and quantity of training data for deep learning is still limited. As a result, no robust method has been found yet that can transfer and generalize well over a variety of geographic locations and typologies of damages. Since damages can be seen as anomalies, occurring sparingly over time and space, we propose to use an anomaly detecting Generative Adversarial Network (GAN) to detect damages. The main advantages of using GANs are that only healthy unannotated images are needed, and that a variety of damages, including the never before seen damage, can be detected. In this study we aimed to investigate 1) the ability of anomaly detecting GANs to detect degradation (potholes and cracks) in asphalt road infrastructures using Mobile Mapper imagery and building damage (collapsed buildings, rubble piles) using post-disaster aerial imagery, and 2) the sensitivity of this method against various types of pre-processing. Our results show that we can detect damages in urban scenes at satisfying levels but not on asphalt roads. Future work will investigate how to further classify the found damages and how to improve damage detection for asphalt roads.


2020 ◽  
Vol 34 (07) ◽  
pp. 11507-11514
Author(s):  
Jianxin Lin ◽  
Yijun Wang ◽  
Zhibo Chen ◽  
Tianyu He

Unsupervised domain translation has recently achieved impressive performance with Generative Adversarial Network (GAN) and sufficient (unpaired) training data. However, existing domain translation frameworks form in a disposable way where the learning experiences are ignored and the obtained model cannot be adapted to a new coming domain. In this work, we take on unsupervised domain translation problems from a meta-learning perspective. We propose a model called Meta-Translation GAN (MT-GAN) to find good initialization of translation models. In the meta-training procedure, MT-GAN is explicitly trained with a primary translation task and a synthesized dual translation task. A cycle-consistency meta-optimization objective is designed to ensure the generalization ability. We demonstrate effectiveness of our model on ten diverse two-domain translation tasks and multiple face identity translation tasks. We show that our proposed approach significantly outperforms the existing domain translation methods when each domain contains no more than ten training samples.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2919 ◽  
Author(s):  
Wangyong He ◽  
Zhongzhao Xie ◽  
Yongbo Li ◽  
Xinmei Wang ◽  
Wendi Cai

Hand pose estimation is a critical technology of computer vision and human-computer interaction. Deep-learning methods require a considerable amount of tagged data. Accordingly, numerous labeled training data are required. This paper aims to generate depth hand images. Given a ground-truth 3D hand pose, the developed method can generate depth hand images. To be specific, a ground truth can be 3D hand poses with the hand structure contained, while the synthesized image has an identical size to that of the training image and a similar visual appearance to the training set. The developed method, inspired by the progress in the generative adversarial network (GAN) and image-style transfer, helps model the latent statistical relationship between the ground-truth hand pose and the corresponding depth hand image. The images synthesized using the developed method are demonstrated to be feasible for enhancing performance. On public hand pose datasets (NYU, MSRA, ICVL), comprehensive experiments prove that the developed method outperforms the existing works.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Huan Yang ◽  
Pengjiang Qian ◽  
Chao Fan

Multimodal registration is a challenging task due to the significant variations exhibited from images of different modalities. CT and MRI are two of the most commonly used medical images in clinical diagnosis, since MRI with multicontrast images, together with CT, can provide complementary auxiliary information. The deformable image registration between MRI and CT is essential to analyze the relationships among different modality images. Here, we proposed an indirect multimodal image registration method, i.e., sCT-guided multimodal image registration and problematic image completion method. In addition, we also designed a deep learning-based generative network, Conditional Auto-Encoder Generative Adversarial Network, called CAE-GAN, combining the idea of VAE and GAN under a conditional process to tackle the problem of synthetic CT (sCT) synthesis. Our main contributions in this work can be summarized into three aspects: (1) We designed a new generative network called CAE-GAN, which incorporates the advantages of two popular image synthesis methods, i.e., VAE and GAN, and produced high-quality synthetic images with limited training data. (2) We utilized the sCT generated from multicontrast MRI as an intermediary to transform multimodal MRI-CT registration into monomodal sCT-CT registration, which greatly reduces the registration difficulty. (3) Using normal CT as guidance and reference, we repaired the abnormal MRI while registering the MRI to the normal CT.


Sign in / Sign up

Export Citation Format

Share Document