Linear electromagnetic inverse scattering via generative adversarial networks

Author(s):  
Huilin Zhou ◽  
Huimin Zheng ◽  
Qiegen Liu ◽  
Jian Liu ◽  
Yuhao Wang

Abstract Electromagnetic inverse-scattering problems (ISPs) are concerned with determining the properties of an unknown object using measured scattered fields. ISPs are often highly nonlinear, causing the problem to be very difficult to address. In addition, the reconstruction images of different optimization methods are distorted which leads to inaccurate reconstruction results. To alleviate these issues, we propose a new linear model solution of generative adversarial network-based (LM-GAN) inspired by generative adversarial networks (GAN). Two sub-networks are trained alternately in the adversarial framework. A linear deep iterative network as a generative network captures the spatial distribution of the data, and a discriminative network estimates the probability of a sample from the training data. Numerical results validate that LM-GAN has admirable fidelity and accuracy when reconstructing complex scatterers.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuma Kokomoto ◽  
Rena Okawa ◽  
Kazuhiko Nakano ◽  
Kazunori Nozaki

AbstractDentists need experience with clinical cases to practice specialized skills. However, the need to protect patient's private information limits their ability to utilize intraoral images obtained from clinical cases. In this study, since generating realistic images could make it possible to utilize intraoral images, progressive growing of generative adversarial networks are used to generate intraoral images. A total of 35,254 intraoral images were used as training data with resolutions of 128 × 128, 256 × 256, 512 × 512, and 1024 × 1024. The results of the training datasets with and without data augmentation were compared. The Sliced Wasserstein Distance was calculated to evaluate the generated images. Next, 50 real images and 50 generated images for each resolution were randomly selected and shuffled. 12 pediatric dentists were asked to observe these images and assess whether they were real or generated. The d prime of the 1024 × 1024 images was significantly higher than that of the other resolutions. In conclusion, generated intraoral images with resolutions of 512 × 512 or lower were so realistic that the dentists could not distinguish whether they were real or generated. This implies that the generated images can be used in dental education or data augmentation for deep learning, without privacy restrictions.


2021 ◽  
Vol 2021 (2) ◽  
pp. 305-322
Author(s):  
Se Eun Oh ◽  
Nate Mathews ◽  
Mohammad Saidur Rahman ◽  
Matthew Wright ◽  
Nicholas Hopper

Abstract We introduce Generative Adversarial Networks for Data-Limited Fingerprinting (GANDaLF), a new deep-learning-based technique to perform Website Fingerprinting (WF) on Tor traffic. In contrast to most earlier work on deep-learning for WF, GANDaLF is intended to work with few training samples, and achieves this goal through the use of a Generative Adversarial Network to generate a large set of “fake” data that helps to train a deep neural network in distinguishing between classes of actual training data. We evaluate GANDaLF in low-data scenarios including as few as 10 training instances per site, and in multiple settings, including fingerprinting of website index pages and fingerprinting of non-index pages within a site. GANDaLF achieves closed-world accuracy of 87% with just 20 instances per site (and 100 sites) in standard WF settings. In particular, GANDaLF can outperform Var-CNN and Triplet Fingerprinting (TF) across all settings in subpage fingerprinting. For example, GANDaLF outperforms TF by a 29% margin and Var-CNN by 38% for training sets using 20 instances per site.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 734 ◽  
Author(s):  
Yan Ma ◽  
Kang Liu ◽  
Zhibin Guan ◽  
Xinkai Xu ◽  
Xu Qian ◽  
...  

Augmented Reality (AR) is crucial for immersive Human–Computer Interaction (HCI) and the vision of Artificial Intelligence (AI). Labeled data drives object recognition in AR. However, manually annotating data is expensive, labor-intensive, and data distribution asymmetry . Scantily labeled data limits the application of AR. Aiming at solving the problem of insufficient and asymmetry training data in AR object recognition, an automated vision data synthesis method, i.e., background augmentation generative adversarial networks (BAGANs), is proposed in this paper based on 3D modeling and the Generative Adversarial Network (GAN) algorithm. Our approach has been validated to have better performance than other methods through image recognition tasks with respect to the natural image database ObjectNet3D. This study can shorten the algorithm development time of AR and expand its application scope, which is of great significance for immersive interactive systems.


2020 ◽  
Vol 2020 (2) ◽  
pp. 17-23
Author(s):  
Vladislav Laptev ◽  
Vyacheslav Danilov ◽  
Olga Gerget

The paper considers the development of a Generative Adversarial Network (GAN) for the synthesis of new medical data. The developed GAN consists of two models trained simultaneously: a generative model (G - Generator), estimating the distribution of data, and a discriminating model (D - Discriminator), which estimates the probability that the sample is obtained from the training data, and not from generator G. To create G, we used own neural network architecture based on convolutional layers using experimental functions of Tensor Flow Addons. To create discriminator D, we used a Transfer Learning (TL) approach. The training procedure is to maximize the likelihood that discriminator D will make a mistake. Experiments show that the proposed GAN architecture completely copes with the task of synthesizing of new medical data.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Pengfei Zhang ◽  
Xiaoming Ju

It is important to detect adversarial samples in the physical world that are far away from the training data distribution. Some adversarial samples can make a machine learning model generate a highly overconfident distribution in the testing stage. Thus, we proposed a mechanism for detecting adversarial samples based on semisupervised generative adversarial networks (GANs) with an encoder-decoder structure; this mechanism can be applied to any pretrained neural network without changing the network’s structure. The semisupervised GANs also give us insight into the behavior of adversarial samples and their flow through the layers of a deep neural network. In the supervised scenario, the latent feature of the semisupervised GAN and the target network’s logit information are used as the input of the external classifier support vector machine to detect the adversarial samples. In the unsupervised scenario, first, we proposed a one-class classier based on the semisupervised Gaussian mixture conditional generative adversarial network (GM-CGAN) to fit the joint feature information of the normal data, and then, we used a discriminator network to detect normal data and adversarial samples. In both supervised scenarios and unsupervised scenarios, experimental results show that our method outperforms latest methods.


2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


Author(s):  
Annapoorani Gopal ◽  
Lathaselvi Gandhimaruthian ◽  
Javid Ali

The Deep Neural Networks have gained prominence in the biomedical domain, becoming the most commonly used networks after machine learning technology. Mammograms can be used to detect breast cancers with high precision with the help of Convolutional Neural Network (CNN) which is deep learning technology. An exhaustive labeled data is required to train the CNN from scratch. This can be overcome by deploying Generative Adversarial Network (GAN) which comparatively needs lesser training data during a mammogram screening. In the proposed study, the application of GANs in estimating breast density, high-resolution mammogram synthesis for clustered microcalcification analysis, effective segmentation of breast tumor, analysis of the shape of breast tumor, extraction of features and augmentation of the image during mammogram classification have been extensively reviewed.


2021 ◽  
Vol 11 (15) ◽  
pp. 7034
Author(s):  
Hee-Deok Yang

Artificial intelligence technologies and vision systems are used in various devices, such as automotive navigation systems, object-tracking systems, and intelligent closed-circuit televisions. In particular, outdoor vision systems have been applied across numerous fields of analysis. Despite their widespread use, current systems work well under good weather conditions. They cannot account for inclement conditions, such as rain, fog, mist, and snow. Images captured under inclement conditions degrade the performance of vision systems. Vision systems need to detect, recognize, and remove noise because of rain, snow, and mist to boost the performance of the algorithms employed in image processing. Several studies have targeted the removal of noise resulting from inclement conditions. We focused on eliminating the effects of raindrops on images captured with outdoor vision systems in which the camera was exposed to rain. An attentive generative adversarial network (ATTGAN) was used to remove raindrops from the images. This network was composed of two parts: an attentive-recurrent network and a contextual autoencoder. The ATTGAN generated an attention map to detect rain droplets. A de-rained image was generated by increasing the number of attentive-recurrent network layers. We increased the number of visual attentive-recurrent network layers in order to prevent gradient sparsity so that the entire generation was more stable against the network without preventing the network from converging. The experimental results confirmed that the extended ATTGAN could effectively remove various types of raindrops from images.


Author(s):  
Lingyu Yan ◽  
Jiarun Fu ◽  
Chunzhi Wang ◽  
Zhiwei Ye ◽  
Hongwei Chen ◽  
...  

AbstractWith the development of image recognition technology, face, body shape, and other factors have been widely used as identification labels, which provide a lot of convenience for our daily life. However, image recognition has much higher requirements for image conditions than traditional identification methods like a password. Therefore, image enhancement plays an important role in the process of image analysis for images with noise, among which the image of low-light is the top priority of our research. In this paper, a low-light image enhancement method based on the enhanced network module optimized Generative Adversarial Networks(GAN) is proposed. The proposed method first applied the enhancement network to input the image into the generator to generate a similar image in the new space, Then constructed a loss function and minimized it to train the discriminator, which is used to compare the image generated by the generator with the real image. We implemented the proposed method on two image datasets (DPED, LOL), and compared it with both the traditional image enhancement method and the deep learning approach. Experiments showed that our proposed network enhanced images have higher PNSR and SSIM, the overall perception of relatively good quality, demonstrating the effectiveness of the method in the aspect of low illumination image enhancement.


Author(s):  
Johannes Haubold ◽  
René Hosch ◽  
Lale Umutlu ◽  
Axel Wetter ◽  
Patrizia Haubold ◽  
...  

Abstract Objectives To reduce the dose of intravenous iodine-based contrast media (ICM) in CT through virtual contrast-enhanced images using generative adversarial networks. Methods Dual-energy CTs in the arterial phase of 85 patients were randomly split into an 80/20 train/test collective. Four different generative adversarial networks (GANs) based on image pairs, which comprised one image with virtually reduced ICM and the original full ICM CT slice, were trained, testing two input formats (2D and 2.5D) and two reduced ICM dose levels (−50% and −80%). The amount of intravenous ICM was reduced by creating virtual non-contrast series using dual-energy and adding the corresponding percentage of the iodine map. The evaluation was based on different scores (L1 loss, SSIM, PSNR, FID), which evaluate the image quality and similarity. Additionally, a visual Turing test (VTT) with three radiologists was used to assess the similarity and pathological consistency. Results The −80% models reach an SSIM of > 98%, PSNR of > 48, L1 of between 7.5 and 8, and an FID of between 1.6 and 1.7. In comparison, the −50% models reach a SSIM of > 99%, PSNR of > 51, L1 of between 6.0 and 6.1, and an FID between 0.8 and 0.95. For the crucial question of pathological consistency, only the 50% ICM reduction networks achieved 100% consistency, which is required for clinical use. Conclusions The required amount of ICM for CT can be reduced by 50% while maintaining image quality and diagnostic accuracy using GANs. Further phantom studies and animal experiments are required to confirm these initial results. Key Points • The amount of contrast media required for CT can be reduced by 50% using generative adversarial networks. • Not only the image quality but especially the pathological consistency must be evaluated to assess safety. • A too pronounced contrast media reduction could influence the pathological consistency in our collective at 80%.


Sign in / Sign up

Export Citation Format

Share Document