scholarly journals Synthesizing Depth Hand Images with GANs and Style Transfer for Hand Pose Estimation

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2919 ◽  
Author(s):  
Wangyong He ◽  
Zhongzhao Xie ◽  
Yongbo Li ◽  
Xinmei Wang ◽  
Wendi Cai

Hand pose estimation is a critical technology of computer vision and human-computer interaction. Deep-learning methods require a considerable amount of tagged data. Accordingly, numerous labeled training data are required. This paper aims to generate depth hand images. Given a ground-truth 3D hand pose, the developed method can generate depth hand images. To be specific, a ground truth can be 3D hand poses with the hand structure contained, while the synthesized image has an identical size to that of the training image and a similar visual appearance to the training set. The developed method, inspired by the progress in the generative adversarial network (GAN) and image-style transfer, helps model the latent statistical relationship between the ground-truth hand pose and the corresponding depth hand image. The images synthesized using the developed method are demonstrated to be feasible for enhancing performance. On public hand pose datasets (NYU, MSRA, ICVL), comprehensive experiments prove that the developed method outperforms the existing works.

Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 467 ◽  
Author(s):  
Ke Chen ◽  
Dandan Zhu ◽  
Jianwei Lu ◽  
Ye Luo

Automatic reconstructing of neural circuits in the brain is one of the most crucial studies in neuroscience. Connectomes segmentation plays an important role in reconstruction from electron microscopy (EM) images; however, it is rather challenging due to highly anisotropic shapes with inferior quality and various thickness. In our paper, we propose a novel connectomes segmentation framework called adversarial and densely dilated network (ADDN) to address these issues. ADDN is based on the conditional Generative Adversarial Network (cGAN) structure which is the latest advance in machine learning with power to generate images similar to the ground truth especially when the training data is limited. Specifically, we design densely dilated network (DDN) as the segmentor to allow a deeper architecture and larger receptive fields for more accurate segmentation. Discriminator is trained to distinguish generated segmentation from manual segmentation. During training, such adversarial loss function is optimized together with dice loss. Extensive experimental results demonstrate that our ADDN is effective for such connectomes segmentation task, helping to retrieve more accurate segmentation and attenuate the blurry effects of generated boundary map. Our method obtains state-of-the-art performance while requiring less computation on ISBI 2012 EM dataset and mouse piriform cortex dataset.


2021 ◽  
Vol 11 (4) ◽  
pp. 1464
Author(s):  
Chang Wook Seo ◽  
Yongduek Seo

There are various challenging issues in automating line art colorization. In this paper, we propose a GAN approach incorporating semantic segmentation image data. Our GAN-based method, named Seg2pix, can automatically generate high quality colorized images, aiming at computerizing one of the most tedious and repetitive jobs performed by coloring workers in the webtoon industry. The network structure of Seg2pix is mostly a modification of the architecture of Pix2pix, which is a convolution-based generative adversarial network for image-to-image translation. Through this method, we can generate high quality colorized images of a particular character with only a few training data. Seg2pix is designed to reproduce a segmented image, which becomes the suggestion data for line art colorization. The segmented image is automatically generated through a generative network with a line art image and a segmentation ground truth. In the next step, this generative network creates a colorized image from the line art and segmented image, which is generated from the former step of the generative network. To summarize, only one line art image is required for testing the generative model, and an original colorized image and segmented image are additionally required as the ground truth for training the model. These generations of the segmented image and colorized image proceed by an end-to-end method sharing the same loss functions. By using this method, we produce better qualitative results for automatic colorization of a particular character’s line art. This improvement can also be measured by quantitative results with Learned Perceptual Image Patch Similarity (LPIPS) comparison. We believe this may help artists exercise their creative expertise mainly in the area where computerization is not yet capable.


2019 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Jamal Firmat Banzi1,2 ◽  
Isack Bulugu3 ◽  
Zhongfu Ye1

Recent hand pose estimation methods require large numbers of annotated training data to extract the dynamic information from a hand representation. Nevertheless, precise and dense annotation on the real data is difficult to come by and the amount of information passed to the training algorithm is significantly higher. This paper presents an approach to developing a hand pose estimation system which can accurately regress a 3D pose in an unsupervised manner. The whole process is performed in three stages. Firstly, the hand is modelled by a novel latent tree dependency model (LTDM) which transforms internal joints location to an explicit representation. Secondly, we perform predictive coding of image sequences of hand poses in order to capture latent features underlying a given image without supervision. A mapping is then performed between an image depth and a generated representation. Thirdly, the hand joints are regressed using convolutional neural networks to finally estimate the latent pose given some depth map. Finally, an unsupervised error term which is a part of the recurrent architecture ensures smooth estimations of the final pose. To demonstrate the performance of the proposed system, a complete experiment is conducted on three challenging public datasets, ICVL, MSRA, and NYU. The empirical results show the significant performance of our method which is comparable or better than state-of-the-art approaches.


Author(s):  
Jonas Hein ◽  
Matthias Seibold ◽  
Federica Bogo ◽  
Mazda Farshad ◽  
Marc Pollefeys ◽  
...  

Abstract Purpose:  Tracking of tools and surgical activity is becoming more and more important in the context of computer assisted surgery. In this work, we present a data generation framework, dataset and baseline methods to facilitate further research in the direction of markerless hand and instrument pose estimation in realistic surgical scenarios. Methods:  We developed a rendering pipeline to create inexpensive and realistic synthetic data for model pretraining. Subsequently, we propose a pipeline to capture and label real data with hand and object pose ground truth in an experimental setup to gather high-quality real data. We furthermore present three state-of-the-art RGB-based pose estimation baselines. Results:  We evaluate three baseline models on the proposed datasets. The best performing baseline achieves an average tool 3D vertex error of 16.7 mm on synthetic data as well as 13.8 mm on real data which is comparable to the state-of-the art in RGB-based hand/object pose estimation. Conclusion:  To the best of our knowledge, we propose the first synthetic and real data generation pipelines to generate hand and object pose labels for open surgery. We present three baseline models for RGB based object and object/hand pose estimation based on RGB frames. Our realistic synthetic data generation pipeline may contribute to overcome the data bottleneck in the surgical domain and can easily be transferred to other medical applications.


2020 ◽  
Vol 34 (01) ◽  
pp. 646-653
Author(s):  
Yiming Gao ◽  
Jiangqin Wu

The automatic style translation of Chinese characters (CH-Char) is a challenging problem. Different from English or general artistic style transfer, Chinese characters contain a large number of glyphs with the complicated content and characteristic style. Early methods on CH-Char synthesis are inefficient and require manual intervention. Recently some GAN-based methods are proposed for font generation. The supervised GAN-based methods require numerous image pairs, which is difficult for many chirography styles. In addition, unsupervised methods often cause the blurred and incorrect strokes. Therefore, in this work, we propose a three-stage Generative Adversarial Network (GAN) architecture for multi-chirography image translation, which is divided into skeleton extraction, skeleton transformation and stroke rendering with unpaired training data. Specifically, we first propose a fast skeleton extraction method (ENet). Secondly, we utilize the extracted skeleton and the original image to train a GAN model, RNet (a stroke rendering network), to learn how to render the skeleton with stroke details in target style. Finally, the pre-trained model RNet is employed to assist another GAN model, TNet (a skeleton transformation network), to learn to transform the skeleton structure on the unlabeled skeleton set. We demonstrate the validity of our method on two chirography datasets we established.


Author(s):  
Annapoorani Gopal ◽  
Lathaselvi Gandhimaruthian ◽  
Javid Ali

The Deep Neural Networks have gained prominence in the biomedical domain, becoming the most commonly used networks after machine learning technology. Mammograms can be used to detect breast cancers with high precision with the help of Convolutional Neural Network (CNN) which is deep learning technology. An exhaustive labeled data is required to train the CNN from scratch. This can be overcome by deploying Generative Adversarial Network (GAN) which comparatively needs lesser training data during a mammogram screening. In the proposed study, the application of GANs in estimating breast density, high-resolution mammogram synthesis for clustered microcalcification analysis, effective segmentation of breast tumor, analysis of the shape of breast tumor, extraction of features and augmentation of the image during mammogram classification have been extensively reviewed.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 10533-10547
Author(s):  
Marek Hruz ◽  
Jakub Kanis ◽  
Zdenek Krnoul

Sign in / Sign up

Export Citation Format

Share Document