scholarly journals Volatile self-inhibitor of spore germination in pathogenic Mucorale Rhizopus arrhizus

2020 ◽  
Vol 96 (9) ◽  
Author(s):  
Mahaldeep Kaur ◽  
Rachna Singh

ABSTRACT Rhizopus arrhizus is a common pathogenic Mucoralean mold that exists as a saprophyte, and is disseminated through sporangiospores, which germinate to form mycelia under suitable environmental or infection settings. Such morphological transitions are often mediated by self-produced effector molecules in a density-dependent fashion. This study aimed to elucidate if a quorum-dependent, cell-density-driven phenomenon exists in R. arrhizus, and identify the molecule(s) involved. The germination of R. arrhizus was observed to be reliant on the seeding density, with nearly 71% and 47% germination in Sabouraud dextrose and glucose asparagine media respectively at 1 × 105–1 × 106 spores/mL, and only 10% and 1% germination respectively with 1 × 108 spores/mL. The late-growth-stage supernatant also hindered the spore germination and liquid-culture biomass in a dose-dependent way. These effects were being mediated by a volatile inhibitor present in the headspace and supernatant of R. arrhizus cultures, identified as 2-methyl-2-butene by gas chromatography and electron ionization-quadrupole mass spectrometry. The compound was present in a density-dependent manner and considerably impaired fungal germ-tube emergence and elongation during germination. Spore swelling remained unaffected. Multiple thin protrusions comprising of F-actin and microtubules were seen emanating from the treated cells, suggestive of filopodia-like and cytoneme-like extensions. The same compound was also detected in Rhizomucor pusillus.

2021 ◽  
Vol 18 ◽  
Author(s):  
Yoshiaki Sato ◽  
Ikuo Kashiwakura ◽  
Masaru Yamaguchi ◽  
Hironori Yoshino ◽  
Takeshi Tanaka ◽  
...  

Background: Interleukin-6 (IL-6) is a multifunctional cytokine involved in various cell functions and diseases. Thus far, several IL-6 inhibitors, such as, humanized monoclonal antibody have been used to block excessive IL-6 signaling causing autoimmune and inflammatory diseases. However, anti-IL-6 and anti-IL-6 receptor monoclonal antibodies have some clinical disadvantages, such as a high cost, unfavorable injection route, and tendency to mask infectious diseases. While a small-molecule IL-6 inhibitor would help mitigate these issues, none are currently available. Objective: The present study evaluated the biological activities of identified compounds on IL-6 stimulus. Methods: We virtually screened potential IL-6 binders from a compound library using INTerprotein’s Engine for New Drug Design (INTENDD®) followed by the identification of more potent IL-6 binders with artificial intelligence (AI)-guided INTENDD®. The biological activities of the identified compounds were assessed with the IL-6-dependent cell line 7TD1. Results: The compounds showed the suppression of IL-6-dependent cell growth in a dose-dependent manner. Furthermore, the identified compound inhibited expression of IL-6-induced phosphorylation of signal transducer and activator of transcription 3 in a dose-dependent manner. Conclusion: Our screening compound demonstrated an inhibitory effect on IL-6 stimulus. These findings may serve as a basis for the further development of small-molecule IL-6 inhibitors.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ming-Ju Hsieh ◽  
Shun-Fa Yang ◽  
Yih-Shou Hsieh ◽  
Tzy-Yen Chen ◽  
Hui-Ling Chiou

Extensive research results support the application of herbal medicine or natural food as an augment during therapy for various cancers. However, the effect of dioscin on tumor cells autophagy has not been clearly clarified. In this study, the unique effects of dioscin on autophagy of hepatoma cells were investigated. Results found that dioscin induced caspase-3- and -9-dependent cell apoptosis in a dose-dependent manner. Moreover, inhibition of ERK1/2 phosphorylation significantly abolished the dioscin-induced apoptosis. In addition, dioscin triggered cell autophagy in early stages. With autophagy inhibitors to hinder the autophagy process, dioscin-induced cell apoptosis was significantly enhanced. An inhibition of caspase activation did not affect the dioscin-induced LC3-II protein expression. Based on the results, we believed that while apoptosis was blocked, dioscin-induced autophagy process also diminished in Huh7 cells. In conclusion, this study indicates that dioscin causes autophagy in Huh7 cells and suggests that dioscin has a cytoprotective effect.


1998 ◽  
Vol 180 (6) ◽  
pp. 1438-1445 ◽  
Author(s):  
W. Mark Cosby ◽  
Dirk Vollenbroich ◽  
Oh Hyoung Lee ◽  
Peter Zuber

ABSTRACT The expression of the srf operon of Bacillus subtilis, encoding surfactin synthetase and the competence regulatory protein ComS, was observed to be reduced when cells were grown in a rich glucose- and glutamine-containing medium in which late-growth culture pH was 5.0 or lower. The production of the surfactin synthetase subunits and of surfactin itself was also reduced. Raising the pH to near neutrality resulted in dramatic increases in srf expression and surfactin production. This apparent pH-dependent induction of srf expression requiredspo0K, which encodes the oligopeptide permease that functions in cell-density-dependent control of sporulation and competence, but not CSF, the competence-inducing pheromone that regulates srf expression in a Spo0K-dependent manner. Both ComP and ComA, the two-component regulatory pair that stimulates cell-density-dependent srf transcription, were required for optimal expression of srf at low and high pHs, but ComP was not required for pH-dependent srf induction. The known negative regulators of srf, RapC and CodY, were found not to function significantly in pH-dependent srf expression. Late-growth culture supernatants at low pH were not active in inducingsrf expression in cells of low-density cultures but were rendered active when their pH was raised to near neutrality. ComQ (and very likely the srf-inducing pheromone ComX) and Spo0K were found to be required for the extracellular induction ofsrf-lacZ at neutral pH. The results suggest thatsrf expression, in response to changes in culture pH, requires Spo0K and another, as yet unidentified, extracellular factor. The study also provides evidence consistent with the hypothesis that ComP acts both positively and negatively in the regulation of ComA and that both activities are controlled by the ComX pheromone.


1990 ◽  
Vol 63 (03) ◽  
pp. 505-509 ◽  
Author(s):  
Thomas Mätzsch ◽  
David Bergqvist ◽  
Ulla Hedner ◽  
Bo Nilsson ◽  
Per Østergaar

SummaryA comparison between the effect of low molecular weight heparin (LMWH) and unfragmented heparin (UH) on induction of osteoporosis was made in 60 rats treated with either UH (2 IU/ g b w), LMWH in 2 doses (2 Xal U/g or 0.4 Xal U/g) or placebo (saline) for 34 days. Studied variables were: bone mineral mass in femora; fragility of humera; zinc and calcium levels in serum and bone ash and albumin in plasma. A significant reduction in bone mineral mass was found in all heparin-treated rats. There was no difference between UH and LMWH in this respect. The effect was dose-dependent in LMWH-treated animals. The zinc contents in bone ash were decreased in all heparin-treated rats as compared with controls. No recognizable pattern was seen in alterations of zinc or calcium in serum. The fragility of the humera, tested as breaking strength did not differ between treatment groups and controls. In conclusion, if dosed according to similar factor Xa inhibitory activities, LMWH induces osteoporosis to the same extent as UH and in a dose-dependent manner. The zinc content in bone ash was decreased after heparin treatment, irrespective of type of heparin given.


1996 ◽  
Vol 76 (01) ◽  
pp. 111-117 ◽  
Author(s):  
Yasuto Sasaki ◽  
Junji Seki ◽  
John C Giddings ◽  
Junichiro Yamamoto

SummarySodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1), are known to liberate nitric oxide (NO). In this study the effects of SNP and SIN-1 on thrombus formation in rat cerebral arterioles and venules in vivo were assessed using a helium-neon (He-Ne) laser. SNP infused at doses from 10 Μg/kg/h significantly inhibited thrombus formation in a dose dependent manner. This inhibition of thrombus formation was suppressed by methylene blue. SIN-1 at a dose of 100 Μg/kg/h also demonstrated a significant antithrombotic effect. Moreover, treatment with SNP increased vessel diameter in a dose dependent manner and enhanced the mean red cell velocity measured with a fiber-optic laser-Doppler anemometer microscope (FLDAM). Blood flow, calculated from the mean red cell velocity and vessel diameters was increased significantly during infusion. In contrast, mean wall shear rates in the arterioles and venules were not changed by SNP infusion. The results indicated that SNP and SIN-1 possessed potent antithrombotic activities, whilst SNP increased cerebral blood flow without changing wall shear rate. The findings suggest that the NO released by SNP and SIN-1 may be beneficial for the treatment and protection of cerebral infarction


2018 ◽  
Vol 1 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Darío Acuña-Castroviejo ◽  
Maria T Noguiera-Navarro ◽  
Russel J Reiter ◽  
Germaine Escames

Due to the broad distribution of extrapineal melatonin in multiple organs and tissues, we analyzed the presence and subcellular distribution of the indoleamine in the heart of rats. Groups of sham-operated and pinealectomized rats were sacrificed at different times along the day, and the melatonin content in myocardial cell membranes, cytosol, nuclei and mitochondria, were measured. Other groups of control animals were treated with different doses of melatonin to monitor its intracellular distribution. The results show that melatonin levels in the cell membrane, cytosol, nucleus, and mitochondria vary along the day, without showing a circadian rhythm. Pinealectomized animals trend to show higher values than sham-operated rats. Exogenous administration of melatonin yields its accumulation in a dose-dependent manner in all subcellular compartments analyzed, with maximal concentrations found in cell membranes at doses of 200 mg/kg bw melatonin. Interestingly, at dose of 40 mg/kg b.w, maximal concentration of melatonin was reached in the nucleus and mitochondrion. The results confirm previous data in other rat tissues including liver and brain, and support that melatonin is not uniformly distributed in the cell, whereas high doses of melatonin may be required for therapeutic purposes.


Contrast- induced nephropathy (CIN) is an elevation of serum creatinine of ≥ 0.5 mg/dL from baseline after two to three days of exposure to contrast substance if there is no other cause for acute kidney injury. Atorvastatin may protect normal kidney physiology from contrast- induced kidney injury by effects unrelated to hypolipidemia termed pleiotropic effect by decline of endothelin production, angiotensin system down regulation, and under expression of endothelial adhesion molecules. This study was conducted to assess the strategy by which atorvastatin can achieve protective effect for kidneys after exposure to contrast media in an animal model. A 40 male rats were distributed randomly into 4 groups; ten rats for each: group (1): given normal saline; group (2): CIN group given iopromide as contrast media; group (3): given atorvastatin (20mg/kg) and iopromide; and group (4): given atorvastatin (40mg/kg) and iopromide. Blood collected by cardiac puncture for detection of serum glutathione, malondialdehyde, matrix metalloproteinase-9, and interleukin-18. The results have shown a significant increase in inflammatory and oxidative stress markers in contrast media group, and significant reduction in these markers in atorvastatin treated groups, in a dose-dependent manner. As conclusion, atorvastatin mechanism for protection against CIN in a dose-dependent manner can mediate by anti-inflammatory and antioxidant effects.


1984 ◽  
Vol 107 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Itaru Kojima ◽  
Etsuro Ogata ◽  
Hiroshi Inano ◽  
Bun-ichi Tamaoki

Abstract. Incubation of 18-hydroxycorticosterone with the sonicated mitochondrial preparation of bovine adrenal glomerulosa tissue leads to the production of aldosterone, as measured by radioimmunoassay. The in vitro production of aldosterone from 18-hydroxycorticosterone requires both molecular oxygen and NADPH, and is inhibited by carbon monoxide. Cytochrome P-450 inhibitors such as metyrapone, SU 8000. SU 10603, SKF 525A, amphenone B and spironolactone decrease the biosynthesis of aldosterone from 18-hydroxycorticosterone. These results support the conclusion that the final reaction in aldosterone synthesis from 18-hydroxycorticosterone is catalyzed by an oxygenase, but not by 18-hydroxysteroid dehydrogenase. By the same preparation, the production of [3H]aldosterone but not [3H]18-hydroxycorticosterone from [1,2-3H ]corticosterone is decreased in a dose-dependent manner by addition of non-radioactive 18-hydroxycorticosterone.


Sign in / Sign up

Export Citation Format

Share Document