Fine-scale diversity patterns in belowground microbial communities are consistent across kingdoms

2019 ◽  
Vol 95 (6) ◽  
Author(s):  
Anders Bjørnsgaard Aas ◽  
Carrie J Andrew ◽  
Rakel Blaalid ◽  
Unni Vik ◽  
Håvard Kauserud ◽  
...  

ABSTRACT The belowground environment is heterogeneous and complex at fine spatial scales. Physical structures, biotic components and abiotic conditions create a patchwork mosaic of potential niches for microbes. Questions remain about mechanisms and patterns of community assembly belowground, including: Do fungal and bacterial communities assemble differently? How do microbes reach the roots of host plants? Within a 4 m2 plot in alpine vegetation, high throughput sequencing of the 16S (bacteria) and ITS1 (fungal) ribosomal RNA genes was used to characterise microbial community composition in roots and adjacent soil of a viviparous host plant (Bistorta vivipara). At fine spatial scales, beta-diversity patterns in belowground bacterial and fungal communities were consistent, although compositional change was greater in bacteria than fungi. Spatial structure and distance-decay relationships were also similar for bacteria and fungi, with significant spatial structure detected at <50 cm among root- but not soil-associated microbes. Recruitment of root microbes from the soil community appeared limited at this sampling and sequencing depth. Possible explanations for this include recruitment from low-abundance populations of soil microbes, active recruitment from neighbouring plants and/or vertical transmission of symbionts to new clones, suggesting varied methods of microbial community assembly for viviparous plants. Our results suggest that even at relatively small spatial scales, deterministic processes play a significant role in belowground microbial community structure and assembly.

2021 ◽  
Vol 9 (2) ◽  
pp. 211
Author(s):  
Jie Gao ◽  
Miao Liu ◽  
Sixue Shi ◽  
Ying Liu ◽  
Yu Duan ◽  
...  

In this study, we analyzed microbial community composition and the functional capacities of degraded sites and restored/natural sites in two typical wetlands of Northeast China—the Phragmites marsh and the Carex marsh, respectively. The degradation of these wetlands, caused by grazing or land drainage for irrigation, alters microbial community components and functional structures, in addition to changing the aboveground vegetation and soil geochemical properties. Bacterial and fungal diversity at the degraded sites were significantly lower than those at restored/natural sites, indicating that soil microbial groups were sensitive to disturbances in wetland ecosystems. Further, a combined analysis using high-throughput sequencing and GeoChip arrays showed that the abundance of carbon fixation and degradation, and ~95% genes involved in nitrogen cycling were increased in abundance at grazed Phragmites sites, likely due to the stimulating impact of urine and dung deposition. In contrast, the abundance of genes involved in methane cycling was significantly increased in restored wetlands. Particularly, we found that microbial composition and activity gradually shifts according to the hierarchical marsh sites. Altogether, this study demonstrated that microbial communities as a whole could respond to wetland changes and revealed the functional potential of microbes in regulating biogeochemical cycles.


2021 ◽  
Author(s):  
Dajana Radujković ◽  
Sara Vicca ◽  
Margaretha van Rooyen ◽  
Peter Wilfahrt ◽  
Leslie Brown ◽  
...  

Environmental circumstances shaping soil microbial communities have been studied extensively, but due to disparate study designs it has been difficult to resolve whether a globally consistent set of predictors exists, or context-dependency prevails. Here, we used a network of 18 grassland sites (11 sampled across regional plant productivity gradients) to examine i) if the same abiotic or biotic factors predict both large- and regional-scale patterns in bacterial and fungal community composition, and ii) if microbial community composition differs consistently with regional plant productivity (low vs high) across different sites. We found that there is high congruence between predictors of microbial community composition across spatial scales; bacteria were predominantly associated with soil properties and fungi with plant community composition. Moreover, there was a microbial community signal that clearly distinguished high and low productivity soils that was shared across worldwide distributed grasslands suggesting that microbial assemblages vary predictably depending on grassland productivity.


2020 ◽  
Author(s):  
xia ding ◽  
Xiaojue Peng ◽  
Zhichao Chen ◽  
Yingjie Li ◽  
Lihui Mao ◽  
...  

Abstract Background Drought is a global environmental stress that limits crop yields. Microbial communities control many biogeochemical processes, and a predictive understanding of how crop microbial communities assemble in response to drought stress is central to addressing the challenges caused by drought. Little is known about the microbiome assembly processes in rice-ecosystems, particularly with regard to their environmental adaptation. Wild rice may serve as a source of superior drought tolerance candidate for rice breeding. There is an urgent need to explore wild rice resistance mechanisms to drought stress. Here, we evaluated the effect of drought stress on the microbial community recruitment and assembly in the endosphere (leaf, stem, and root) and rhizosphere of Oryza longistaminata. Results Species replacement was the dominant process shaping microbial community composition under drought stress. O. longistaminata recruited the phyla Actinobacteria and Fusobacteria, the genus Streptomyces, and phototrophic prokaryotes to improve its fitness. The host exerted strong effects on microbiome assembly, and the responses of the microbial community structure to the drought environment showed above- and belowground patterns. Drought reduced taxonomic α-diversity and destabilized co-occurrence network properties in the leaves and stems, but not in the roots and rhizosphere. Drought promoted the restructuring and strengthening of belowground network links to more strongly interconnect network properties. The drought response of the microbiome was phylogenetically conserved. Stochastic (neutral) processes acted on microbial community reassembly in response to drought stress across all four compartments. Conclusions Our results provide new insight into the mechanisms through which drought alters microbial community assembly in drought-tolerant wild rice and reveal a potential strategy for manipulating plant microbiomes to improve crop fitness.


2020 ◽  
Vol 8 (9) ◽  
pp. 1385
Author(s):  
Jun Li ◽  
Ziqiong Luo ◽  
Chenhui Zhang ◽  
Xinjing Qu ◽  
Ming Chen ◽  
...  

Camellia yuhsienensis Hu, endemic to China, is a predominant oilseed crop, due to its high yield and pathogen resistance. Past studies have focused on the aboveground parts of C. yuhsienensis, whereas the microbial community of the rhizosphere has not been reported yet. This study is the first time to explore the influence of seasonal variation on the microbial community in the rhizosphere of C. yuhsienensis using high-throughput sequencing. The results showed that the dominant bacteria in the rhizosphere of C. yuhsienensis were Chloroflexi, Proteobacteria, Acidobacteria, Actinobacteria, and Planctomycetes, and the dominant fungi were Ascomycota, Basidiomycota, and Mucoromycota. Seasonal variation has significant effects on the abundance of the bacterial and fungal groups in the rhizosphere. A significant increase in bacterial abundance and diversity in the rhizosphere reflected the root activity of C. yuhsienensis in winter. Over the entire year, there were weak correlations between microorganisms and soil physiochemical properties in the rhizosphere. In this study, we found that the bacterial biomarkers in the rhizosphere were chemoorganotrophic Gram-negative bacteria that grow under aerobic conditions, and fungal biomarkers, such as Trichoderma, Mortierella, and Lecanicillium, exhibited protection against pathogens in the rhizosphere. In the rhizosphere of C. yuhsienensis, the dominant functions of the bacteria included nitrogen metabolism, oxidative phosphorylation, glycine, serine and threonine metabolism, glutathione metabolism, and sulfur metabolism. The dominant fungal functional groups were endophytes and ectomycorrhizal fungi of a symbiotroph trophic type. In conclusion, seasonal variation had a remarkable influence on the microbial communities and functions, which were also significantly different in the rhizosphere and non-rhizosphere of C. yuhsienensis. The rhizosphere of C. yuhsienensis provides suitable conditions with good air permeability that allows beneficial bacteria and fungi to dominate the soil microbial community, which can improve the growth and pathogen resistance of C. yuhsienensis.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 285 ◽  
Author(s):  
Mengxin Zhao ◽  
Jing Cong ◽  
Jingmin Cheng ◽  
Qi Qi ◽  
Yuyu Sheng ◽  
...  

Subtropical and tropical broadleaf forests play important roles in conserving biodiversity and regulating global carbon cycle. Nonetheless, knowledge about soil microbial diversity, community composition, turnover and microbial functional structure in sub- and tropical broadleaf forests is scarce. In this study, high-throughput sequencing was used to profile soil microbial community composition, and a micro-array GeoChip 5.0 was used to profile microbial functional gene distribution in four sub- and tropical broadleaf forests (HS, MES, HP and JFL) in southern China. The results showed that soil microbial community compositions differed dramatically among all of four forests. Soil microbial diversities in JFL were the lowest (5.81–5.99) and significantly different from those in the other three forests (6.22–6.39). Furthermore, microbial functional gene interactions were the most complex and closest, likely in reflection to stress associated with the lowest nitrogen and phosphorus contents in JFL. In support of the importance of environmental selection, we found selection (78–96%) dominated microbial community assembly, which was verified by partial Mantel tests showing significant correlations between soil phosphorus and nitrogen content and microbial community composition. Taken together, these results indicate that nitrogen and phosphorus are pivotal in shaping soil microbial communities in sub- and tropical broadleaf forests in southern China. Changes in soil nitrogen and phosphorus, in response to plant growth and decomposition, will therefore have significant changes in both microbial community assembly and interaction.


2015 ◽  
Vol 91 (12) ◽  
pp. fiv141 ◽  
Author(s):  
Cristina Riquelme ◽  
François Rigal ◽  
Jennifer J. M. Hathaway ◽  
Diana E. Northup ◽  
Michael N. Spilde ◽  
...  

Fuel ◽  
2017 ◽  
Vol 189 ◽  
pp. 340-349 ◽  
Author(s):  
Aline Oliboni de Azambuja ◽  
Francielle Bücker ◽  
Patrícia Dörr de Quadros ◽  
Kateryna Zhalnina ◽  
Raquel Dias ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document