Utilization of different dissolved organic phosphorus sources by Symbiodinium voratum in vitro

2019 ◽  
Vol 95 (11) ◽  
Author(s):  
Liu Tian-Tian ◽  
Huang Ping ◽  
Liu Jia-Xing ◽  
Ke Zhi-Xin ◽  
Tan Ye-Hui

ABSTRACT This study examines the physiological responses of the Symbiodiniumvoratum (clade E) to two types of phosphates having different chemical bonds—phosphoesters (C-O-P bonds) and phosphonates (C-P bonds) to explore Symbiodinium cell growth and the molecular perspective of the P utilization process. Alkaline phosphatase (AP), PhnX, PhoA and PhoX expression was profiled for different P conditions using the RT-qPCR method. In a sterile system, Symbiodinium could decompose phosphoesters, such as ATP and glucose 6-phosphate (G-6-P), into dissolved inorganic P (DIP) to supplement inorganic phosphorus but could not directly use phosphoesters for growth. The growth rate and photosynthetic efficiency of zooxanthellae in phosphoester-containing media did not significantly differ from those in the DIP group but were significantly inhibited in medium containing phosphonates such as N-(phosphonomethyl)glycine (glyphosate) and 2-aminoethylphosphonic acid (2-AEP), as well as in DIP-poor medium. The phosphonate group DIP concentration did not change remarkably, indicating that phosphonates can neither be directly used by zooxanthellae nor decomposed into DIP. Our RT-qPCR results support our views that the phosphoesters (C-O-P) had been hydrolyzed outside the cell before being absorbed into the Symbiodinium cell, and implies that PhnX, PhoA and PhoX are perhaps responsible for transporting DIP from medium into cells and for storage of DIP.

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1700
Author(s):  
Maria Consolación Milián-Sorribes ◽  
Ana Tomás-Vidal ◽  
David S. Peñaranda ◽  
Laura Carpintero ◽  
Juan S. Mesa ◽  
...  

This study was conducted to evaluate the apparent availability and P and N excretion in rainbow trout (Oncorhynchus mykiss) using different inorganic phosphorus sources. With this goal, fish (153 ± 14.1 g) fed four inorganic P sources were assayed: monoammonium phosphate (MAP, NH4H2PO4), monosodium/monocalcium phosphate (SCP-2%, AQphos+, NaH2PO4/Ca(H2PO4)2·H2O in proportion 12/88), monosodium/monocalcium phosphate (SCP-5%, NaH2PO4/Ca(H2PO4)2·H2O in proportion 30/70) and monocalcium phosphate (MCP, Ca(H2PO4)2·H2O). Phosphorus (P) digestibility, in diets that included MAP and SCP-2% as inorganic phosphorus sources, were significantly higher than for SCP-5% and MCP sources. In relation to the P excretion pattern, independent of the diet, a peak at 6 h after feeding was registered, but at different levels depending on inorganic P sources. Fish fed an MAP diet excreted a higher amount of dissolved P in comparison with the rest of the inorganic P sources, although the total P losses were lower in MAP and SCP-2% (33.02% and 28.13, respectively) than in SCP-5% and MCP sources (43.35% and 47.83, respectively). Nitrogen (N) excretion was also studied, and the fish fed an SCP-5% diet provided lower values (15.8%) than MAP (28.0%). When N total wastes were calculated, SCP-2% and SCP-5% showed the lowest values (31.54 and 28.25%, respectively). In conclusion, based on P and N digestibility and excretion, the SCP-2% diet showed the best results from a nutritional and environmental point of view.


Author(s):  
MJ Islam ◽  
MS Rahman ◽  
Rubeca Fancy ◽  
AKMS Rahman ◽  
M Shamsuzzoha ◽  
...  

The variability in phosphorus concentrations and the decomposition rates of organic phosphorus were measured in five selected rivers through four surveys in July and November of 2012, and February and May of 2013. After collection the water samples were incubated for 20 days in a dark incubator and the change of forms of phosphorus such as particulate organic phosphorus (POP), dissolved organic phosphorus (DOP) and dissolved inorganic phosphorus (DIP) were analyzed. By fitting the changes to two types of models, the decomposition rates of organic phosphorus were determined. The mean total organic phosphorus (TOP) decomposition rate coefficients in the studied rivers was 0.039 day-1. The average POP decomposition rate coefficient (POP?DOP?DIP model) was 0.038 day-1 while the mean DOP decomposition rate coefficient was 0.251 day-1. The decomposition rate coefficients measured in this study might be applicable for modeling of river water quality.Int. J. Agril. Res. Innov. & Tech. 5 (2): 31-36, December, 2015


2010 ◽  
Vol 7 (2) ◽  
pp. 695-710 ◽  
Author(s):  
M. W. Lomas ◽  
A. L. Burke ◽  
D. A. Lomas ◽  
D. W. Bell ◽  
C. Shen ◽  
...  

Abstract. Inorganic phosphorus (SRP) concentrations in the subtropical North Atlantic are some of the lowest in the global ocean and have been hypothesized to constrain primary production. Based upon data from several transect cruises in this region, it has been hypothesized that dissolved organic phosphorus (DOP) supports a significant fraction of primary production in the subtropical North Atlantic. In this study, a time-series of phosphorus biogeochemistry is presented for the Bermuda Atlantic Time-series Study site, including rates of phosphorus export. Most parameters have a seasonal pattern, although year-over-year variability in the seasonal pattern is substantial, likely due to differences in external forcing. Suspended particulate phosphorus exhibits a seasonal maximum during the spring bloom, despite the absence of a seasonal peak in SRP. However, DOP concentrations are at an annual maximum prior to the winter/spring bloom and decline over the course of the spring bloom while whole community alkaline phosphatase activities are highest. As a result of DOP bioavailability, the growth of particles during the spring bloom occurs in Redfield proportions, though particles exported from the euphotic zone show rapid and significant remineralization of phosphorus within the first 50 m below the euphotic zone. Based upon DOP data from transect cruises in this region, the southward cross gyral flux of DOP is estimated to support ~25% of annual primary production and ~100% of phosphorus export. These estimates are consistent with other research in the subtropical North Atlantic and reinforce the hypothesis that while the subtropics may be phosphorus stressed (a physiological response to low inorganic phosphorus), utilization of the DOP pool allows production and accumulation of microbial biomass at Redfield proportions.


2009 ◽  
Vol 6 (5) ◽  
pp. 10137-10175 ◽  
Author(s):  
M. W. Lomas ◽  
A. L. Burke ◽  
D. A. Lomas ◽  
D. W. Bell ◽  
C. Shen ◽  
...  

Abstract. Inorganic phosphorus (SRP) concentrations in the subtropical North Atlantic are some of the lowest in the global ocean and have been hypothesized to constrain primary production. Based upon data from several transect cruises in this region, it has been hypothesized that dissolved organic phosphorus (DOP) supports a significant fraction of primary production. In this study, a time-series of phosphorus biogeochemistry is presented for the Bermuda Atlantic Time-series Study site, including rates of phosphorus export. Most parameters have a seasonal pattern, although year-over-year variability in the seasonal pattern is substantial, likely due to differences in external forcing. Suspended particulate phosphorus exhibits a seasonal maximum during the spring bloom, despite the absence of a seasonal peak in SRP. However, DOP concentrations are at an annual maximum prior to the winter/spring bloom and decline over the course of the spring bloom while whole community alkaline phosphatase activities are highest. As a result of DOP bioavailability, the growth of particles during the spring bloom occurs in Redfield proportions, though particles exported from the euphotic zone show rapid and significant remineralization of phosphorus within the first 50 m below the euphotic zone. Based upon DOP data from transect cruises in this region, the southward cross gyral flux of DOP is estimated to support ~32% of annual primary production and ~100% of phosphorus export. These estimates are consistent with other research in the subtropical North Atlantic and reinforce the hypothesis that while the subtropics may be phosphorus stressed (a physiological response to low inorganic phosphorus), utilization of the DOP pool allows production and accumulation of microbial biomass at Redfield proportions.


Author(s):  
K.W. Perrott

Changes in phosphorus (P) fractions of unfertilised and fertilised (superphosphate) soil were investigated over five years at a hill country site near Te Kuiti. Only soil inorganic P (Pi) reserves were utilised for plant uptake when superphosphate was withheld at the site. Immobilisation of P as soil organic P (PO) contributed to depletion of the soil Pi reserves during the first two years of this trial. Where superphosphate was applied, immobilisation of P as PO amounted to about 25% of applied P during the five years measurements were made. Changes in soil P fractions indicated that all forms of soil Pi were utilised when superphosphate was withheld. These included readily available Pi, Al- Pi, Fe-Pi, and residual phosphate rock from previous fertiliser applications. Depletion of the phosphate rock residues in the soil also occurred where superphosphate was applied and appears to have been completed within about two years. The phosphate rock residues had probably accumulated because of the relatively high amounts of unacidulated phosphate rock in superphosphate manufactured before 1983. Accumulation of Po associated with humic acid, or adsorbed on surfaces of hy drous oxides of Al and Fe, occurred in both fertilised and unfertilised soils. The more labile forms of PO also increased in the fertilised soil. Keywords inorganic phosphorus, organic phosphorus, phosphorus immobilisation, soil phosphorus, soil phosphorus fractions, soil phosphorus utilisation.


1965 ◽  
Vol 45 (3) ◽  
pp. 323-329 ◽  
Author(s):  
M. J. S. Floate

In sequences of grassland soils on south-facing slopes and forested soils on north-facing slopes in southern British Columbia, pH decreased but C, N, and organic phosphorus (Po) increased with increase in elevation from 1800 to 7400 ft. At the highest elevations grassland and forested soils contained similar amounts of C, N, and Po. The surface horizons of grassland soils at the lowest elevations contained C and N in similar amount to forested soils between 4000 and 5000 ft. C, N, and Po decreased with depth in all profiles but the amount of H2SO4-soluble inorganic P (Pa) increased to its highest percentage of the total, up to 98%, in the parent materials. Although both C/N and C/Po ratios decreased with depth, the values for C/Po were not high and indicated that inorganic phosphorus supply is not limiting the accumulation of P in the soil organic matter. These properties were interpreted as the effects of climate, modified by elevation, aspect, and vegetation, on weakly weathered parent materials.


2019 ◽  
Vol 7 (8) ◽  
pp. 232 ◽  
Author(s):  
Xin Lin ◽  
Chentao Guo ◽  
Ling Li ◽  
Tangcheng Li ◽  
Senjie Lin

Alkaline phosphatase (AP) enables marine phytoplankton to utilize dissolved organic phosphorus (DOP) when dissolved inorganic phosphate (DIP) is depleted in the ocean. Dinoflagellate AP (Dino-AP) represents a newly classified atypical type of AP, PhoAaty. Despite While being a conventional AP, PhoAEC is known to recruit Zn2+ and Mg2+ in the active center, and the cofactors required by PhoAaty have been contended and remain unclear. In this study, we investigated the metal ion requirement of AP in five dinoflagellate species. After AP activity was eliminated by using EDTA to chelate metal ions, the enzymatic activity could be recovered by the supplementation of Ca2+, Mg2+ and Mn2+ in all cases but not by that of Zn2+. Furthermore, the same analysis conducted on the purified recombinant ACAAP (AP of Amphidinium carterae) verified that the enzyme could be activated by Ca2+, Mg2+, and Mn2+ but not Zn2+. We further developed an antiserum against ACAAP, and a western blot analysis using this antibody showed a remarkable up-regulation of ACAAP under a phosphate limitation, consistent with elevated AP activity. The unconventional metal cofactor requirement of Dino-AP may be an adaptation to trace metal limitations in the ocean, which warrants further research to understand the niche differentiation between dinoflagellates and other phytoplankton that use Zn–Mg AP in utilizing DOP.


Sign in / Sign up

Export Citation Format

Share Document