scholarly journals Archaeal tyrosine recombinases

Author(s):  
Catherine Badel ◽  
Violette Da Cunha ◽  
Jacques Oberto

ABSTRACT The integration of mobile genetic elements into their host chromosome influences the immediate fate of cellular organisms and gradually shapes their evolution. Site-specific recombinases catalyzing this integration have been extensively characterized both in bacteria and eukarya. More recently, a number of reports provided the in-depth characterization of archaeal tyrosine recombinases and highlighted new particular features not observed in the other two domains. In addition to being active in extreme environments, archaeal integrases catalyze reactions beyond site-specific recombination. Some of these integrases can catalyze low-sequence specificity recombination reactions with the same outcome as homologous recombination events generating deep rearrangements of their host genome. A large proportion of archaeal integrases are termed suicidal due to the presence of a specific recombination target within their own gene. The paradoxical maintenance of integrases that disrupt their gene upon integration implies novel mechanisms for their evolution. In this review, we assess the diversity of the archaeal tyrosine recombinases using a phylogenomic analysis based on an exhaustive similarity network. We outline the biochemical, ecological and evolutionary properties of these enzymes in the context of the families we identified and emphasize similarities and differences between archaeal recombinases and their bacterial and eukaryal counterparts.

1999 ◽  
Vol 181 (14) ◽  
pp. 4185-4192 ◽  
Author(s):  
Szabolcs Semsey ◽  
IstvAn Papp ◽  
Zsuzsanna Buzas ◽  
Andras Patthy ◽  
Laszlo Orosz ◽  
...  

ABSTRACT Phage 16-3 is a temperate phage of Rhizobium meliloti 41 which integrates its genome with high efficiency into the host chromosome by site-specific recombination through DNA sequences of attB and attP. Here we report the identification of two phage-encoded genes required for recombinations at these sites: int (phage integration) and xis(prophage excision). We concluded that Int protein of phage16-3 belongs to the integrase family of tyrosine recombinases. Despite similarities to the cognate systems of the lambdoid phages, the 16-3 int xis att system is not active in Escherichia coli, probably due to requirements for host factors that differ in Rhizobium meliloti and E. coli. The application of the 16-3 site-specific recombination system in biotechnology is discussed.


1990 ◽  
Vol 10 (1) ◽  
pp. 235-242
Author(s):  
L Meyer-Leon ◽  
R B Inman ◽  
M M Cox

Holliday structures are formed in the course of FLP protein-promoted site-specific recombination. Here, we demonstrate that Holliday structures are formed in reactions involving wild-type substrates and that they are kinetically competent with respect to the overall reaction rate. Together with a previous demonstration of chemical competence (L. Meyer-Leon, L.-C. Huang, S. W. Umlauf, M. M. Cox, and R. B. Inman, Mol. Cell. Biol. 8:3784-3796, 1988), Holliday structures therefore meet all criteria necessary to establish that they are obligate reaction intermediates in FLP-mediated site-specific recombination. In addition, kinetic evidence suggests that two distinct forms of the Holliday intermediate are present in the reaction pathway, interconverted in an isomerization process that is rate limiting at 0 degree C.


2002 ◽  
Vol 184 (1) ◽  
pp. 177-182 ◽  
Author(s):  
Szabolcs Semsey ◽  
Béla Blaha ◽  
Krisztián Köles ◽  
László Orosz ◽  
Péter P. Papp

ABSTRACT The integrase protein of the Rhizobium meliloti 41 phage 16-3 has been classified as a member of the Int family of tyrosine recombinases. The site-specific recombination system of the phage belongs to the group in which the target site of integration (attB) is within a tRNA gene. Since tRNA genes are conserved, we expected that the target sequence of the site-specific recombination system of the 16-3 phage could occur in other species and integration could take place if the required putative host factors were also provided by the targeted cells. Here we report that a plasmid (pSEM167) carrying the attP element and the integrase gene (int) of the phage can integrate into the chromosomes of R. meliloti 1021 and eight other species. In all cases integration occurred at so-far-unidentified, putative proline tRNA (CGG) genes, indicating the possibility of their common origin. Multiple alignment of the sequences suggested that the location of the att core was different from that expected previously. The minimal attB was identified as a 23-bp sequence corresponding to the anticodon arm of the tRNA.


2016 ◽  
Vol 99 (4) ◽  
pp. 420-437 ◽  
Author(s):  
Charles J. Dorman ◽  
Marina M. Bogue

Site-specific recombination is employed widely in bacteria and bacteriophage as a basis for genetic switching events that control phenotypic variation. It plays a vital role in the life cycles of phages and in the replication cycles of chromosomes and plasmids in bacteria. Site-specific recombinases drive these processes using very short segments of identical (or nearly identical) DNA sequences. In some cases, the efficiencies of the recombination reactions are modulated by the topological state of the participating DNA sequences and by the availability of accessory proteins that shape the DNA. These dependencies link the molecular machines that conduct the recombination reactions to the physiological state of the cell. This is because the topological state of bacterial DNA varies constantly during the growth cycle and so does the availability of the accessory factors. In addition, some accessory factors are under allosteric control by metabolic products or second messengers that report the physiological status of the cell. The interplay between DNA topology, accessory factors and site-specific recombination provides a powerful illustration of the connectedness and integration of molecular events in bacterial cells and in viruses that parasitise bacterial cells.


Parasitology ◽  
2014 ◽  
Vol 141 (11) ◽  
pp. 1390-1398 ◽  
Author(s):  
ELENA JIMÉNEZ-RUIZ ◽  
ELEANOR H. WONG ◽  
GURMAN S. PALL ◽  
MARKUS MEISSNER

SUMMARYThe dissection of apicomplexan biology has been highly influenced by the genetic tools available for manipulation of parasite DNA. Here, we describe different techniques available for the generation of conditional mutants. Comparison of the advantages and disadvantages of the three most commonly used regulation systems: the tetracycline inducible system, the regulation of protein stability and site-specific recombination are discussed. Using some previously described examples we explore some of the pitfalls involved in gene-function analysis using these systems that can lead to wrong or over-interpretation of phenotypes. We will also mention different options to standardize the application of these techniques for the characterization of gene function in high-throughput.


2009 ◽  
Vol 53 (8) ◽  
pp. 3528-3533 ◽  
Author(s):  
Marco Maria D'Andrea ◽  
Tommaso Giani ◽  
Silvia D'Arezzo ◽  
Alessandro Capone ◽  
Nicola Petrosillo ◽  
...  

ABSTRACT Two epidemiologically unrelated carbapenem-resistant Acinetobacter baumannii isolates were investigated as representatives of the first Italian isolates producing the OXA-24 carbapenemase. Both isolates were of European clonal lineage II and carried an identical OXA-24-encoding plasmid, named pABVA01. Comparative analysis revealed that in pABVA01, bla OXA-24 was part of a DNA module flanked by conserved inverted repeats homologous to XerC/XerD binding sites, which in other Acinetobacter plasmids flank different DNA modules, suggesting mobilization by a novel site-specific recombination mechanism.


Sign in / Sign up

Export Citation Format

Share Document