sulfonamide resistance genes
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 16)

H-INDEX

16
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Laura de Nies ◽  
Susheel Bhanu Busi ◽  
Benoit Josef Kunath ◽  
Patrick May ◽  
Paul Wilmes

Biological wastewater treatment plants (BWWTP) are considered to be hotspots of evolution and subsequent spread of antimicrobial resistance (AMR). Mobile genetic elements (MGEs) promote the mobilization and dissemination of antimicrobial resistance genes (ARGs) and are thereby critical mediators of AMR within the BWWTP microbial community. At present, it is unclear whether specific AMR categories are differentially disseminated via bacteriophages (phages) or plasmids. To understand the segregation of AMR in relation to MGEs, we analyzed meta-omic (metagenomic, metatranscriptomic and metaproteomic) data systematically collected over 1.5 years from a BWWTP. Our results showed a core group of fifteen AMR categories which were found across all timepoints. Some of these AMR categories were disseminated exclusively (bacitracin) or primarily (aminoglycoside, MLS, sulfonamide) via plasmids or phages (fosfomycin and peptide), whereas others were disseminated equally by both MGEs. Subsequent expression- and protein-level analyses further demonstrated that aminoglycoside, bacitracin and sulfonamide resistance genes were expressed more by plasmids, in contrast to fosfomycin and peptide AMR expression by phages, thereby validating our genomic findings. Longitudinal assessment further underlined these findings whereby the log2-fold changes of aminoglycoside, bacitracin and sulfonamide resistance genes were increased in plasmids, while fosfomycin and peptide resistance showed similar trends in phages. In the analyzed communities, the dominant taxon Candidatus Microthrix parvicella was a major contributor to several AMR categories whereby its plasmids primarily mediated aminoglycoside resistance. Importantly, we also found AMR associated with ESKAPEE pathogens within the BWWTP, for which MGEs also contributed differentially to the dissemination of ARGs. Collectively our findings pave the way towards understanding the segmentation of AMR within MGEs, thereby shedding new light on resistome populations and their mediators, essential elements that are of immediate relevance to human health.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 699
Author(s):  
Hui Han ◽  
Mohan Bai ◽  
Yanting Chen ◽  
Yali Gong ◽  
Ming Wu ◽  
...  

Although composting is effective in deactivating antibiotic substances in manure, the influence of compost fertilization on the occurrence and dissemination of antibiotic resistance in arable soils remains to be controversial. Herein, the abundance and diversity of two sulfonamide resistance genes (sul1 and sul2) in soil fertilized by compost spiked with two concentrations of sulfadiazine (1 and 10 mg kg−1) were studied intensively by qPCR and high throughput sequencing based on a two-month microcosm experiment. The concentration of sulfadiazine decreased rapidly after spiking from 25% at Day 1 to less than 2.7% at Day 60. Relative abundance of both sul1 and sul2 were significantly higher in soil amended with compost than the non-amended control at Day 1 and slightly decreased with incubation time except for sul2 in the S10 treatment. Soil bacterial communities were transiently shifted by compost fertilization regardless of the presence of sulfadiazine. Relative abundance of genera in three hubs positively interlinked with sul1 and sul2 were significantly higher in compost treated soil than the control at Day 1, 7 and 21, but not at Day 60. High throughput sequencing analyses revealed that most detected (>67% in relative abundance) sul1 and sul2 genotypes sharing >99% similarity with those found in gammaproteobacterial pathogens frequently were commonly present in compost and soil. These results indicated that compost fertilization might increase the abundance rather than diversity of sulfadiazine-resistant populations in soil, which may be facilitated by the presence of sulfadiazine.


2021 ◽  
pp. 2031-2040
Author(s):  
Camila Costa de Oliveira ◽  
◽  
Danielli Monsores Bertholoto ◽  
Elisamara Caldeira do Nascimento ◽  
Everaldo Zonta ◽  
...  

Animal waste is widely used in organic production systems. However, these residues can increase antimicrobial determinants in the soil. In this perspective, this study was developed to evaluate the presence of sulfonamide resistance genes in soils from an organic production system that received animal waste as organic fertilizer. Soil samples were collected from four properties with different management practices to increase soil fertility. Three properties use the animal waste from the conventional system and the other use plant residues as soil cover and a legal reserve. The extraction of total DNA from soil was carried out followed by the amplification of genes encoding sulfonamide resistance (sul1 and sul2) by the PCR (polymerase chain reaction) technique. The sul1 and sul2 genes were detected only in soils treated with animal waste. The genes were not detected in soils from the legal reserve and the property that used plant residues as soil cover. These results indicate that the use of animal waste as agricultural fertilizer can increase genes for resistance to antimicrobials in the soil and the composting process may not be enough to eliminate them. This information reiterates the need to implement standards that establish quality parameters for animal waste, considering resistance to antimicrobials, as well as the development of management strategies that reduce the risk of spreading resistance to antimicrobials when these residues are applied to soils.


2021 ◽  
Vol 275 ◽  
pp. 116587
Author(s):  
Muhammad Fahad Sardar ◽  
Changxiong Zhu ◽  
Bing Geng ◽  
Yali Huang ◽  
Bilawal Abbasi ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 235
Author(s):  
Zoi Athanasakopoulou ◽  
Katerina Tsilipounidaki ◽  
Marina Sofia ◽  
Dimitris C. Chatzopoulos ◽  
Alexios Giannakopoulos ◽  
...  

Resistance mediated by β-lactamases is a globally spread menace. The aim of the present study was to determine the occurrence of Escherichia coli producing plasmid-encoded AmpC β-lactamases (pAmpC) in animals. Fecal samples from chickens (n = 159), cattle (n = 104), pigs (n = 214), and various wild bird species (n = 168), collected from different Greek regions during 2018–2020, were screened for the presence of pAmpC-encoding genes. Thirteen E. coli displaying resistance to third-generation cephalosporins and a positive AmpC confirmation test were detected. blaCMY-2 was the sole pAmpC gene identified in 12 chickens’ and 1 wild bird (Eurasian magpie) isolates and was in all cases linked to an upstream ISEcp1-like element. The isolates were classified into five different sequence types: ST131, ST117, ST155, ST429, and ST1415. Four chickens’ stains were assigned to ST131, while five chickens’ strains and the one from the Eurasian magpie belonged to ST117. Seven pAmpC isolates co-harbored genes conferring resistance to tetracyclines (tetM, tetB, tetC, tetD), 3 carried sulfonamide resistance genes (sulI and sulII), and 10 displayed mutations in the quinolone resistance-determining regions of gyrA (S83L+D87N) and parC (S80I+E84V). This report provides evidence of pAmpC dissemination, describing for the first time the presence of CMY-2 in chickens and wild birds from Greece.


Sign in / Sign up

Export Citation Format

Share Document