Yeast genes required for conversion of grape precursors to varietal thiols in wine

2015 ◽  
Vol 15 (5) ◽  
pp. fov034 ◽  
Author(s):  
Margarita Santiago ◽  
Richard C. Gardner
Keyword(s):  
Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 879-892 ◽  
Author(s):  
Anatoly V Grishin ◽  
Michael Rothenberg ◽  
Maureen A Downs ◽  
Kendall J Blumer

Abstract In the yeast Saccharomyces cerevisiae, mating pheromone response is initiated by activation of a G protein- and mitogen-activated protein (MAP) kinase-dependent signaling pathway and attenuated by several mechanisms that promote adaptation or desensitization. To identify genes whose products negatively regulate pheromone signaling, we screened for mutations that suppress the hyperadaptive phenotype of wild-type cells overexpressing signaling-defective G protein β subunits. This identified recessive mutations in MOT3, which encodes a nuclear protein with two Cys2-His2 Zn fingers. MOT3 was found to be a dosage-dependent inhibitor of pheromone response and pheromone-induced gene expression and to require an intact signaling pathway to exert its effects. Several results suggested that Mot3 attenuates expression of pheromone-responsive genes by mechanisms distinct from those used by the negative transcriptional regulators Cdc36, Cdc39, and Mot2. First, a Mot3-lexA fusion functions as a transcriptional activator. Second, Mot3 is a dose-dependent activator of several genes unrelated to pheromone response, including CYC1, SUC2, and LEU2. Third, insertion of consensus Mot3 binding sites (C/A/T)AGG(T/C)A activates a promoter in a MOT3-dependent manner. These findings, and the fact that consensus binding sites are found in the 5′ flanking regions of many yeast genes, suggest that Mot3 is a globally acting transcriptional regulator. We hypothesize that Mot3 regulates expression of factors that attenuate signaling by the pheromone response pathway.


Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 795-805
Author(s):  
Jinah Kim ◽  
Jeanne P Hirsch

Abstract SSF1 and SSF2 are redundant essential yeast genes that, when overexpressed, increase the mating efficiency of cells containing a defective Ste4p Gβ subunit. To identify the precise function of these genes in mating, different responses to pheromone were assayed in cells that either lacked or overexpressed SSF gene products. Cells containing null alleles of both SSF1 and SSF2 displayed the normal transcriptional induction response to pheromone but were unable to form mating projections. Overexpression of SSF1 conferred the ability to form mating projections on cells containing a temperature-sensitive STE4 allele, but had only a small effect on transcriptional induction. SSF1 overexpression preferentially increased the mating efficiency of a strain containing a null allele of SPA2, a gene that functions specifically in cell morphology. To investigate whether Ssf1p plays a direct physical role in mating projection formation, its subcellular location was determined. An Ssf1p-GFP fusion was found to localize to the nucleolus, implying that the role of SSF gene products in projection formation is indirect. The region of Ssf1p-GFP localization in cells undergoing projection formation was larger and more diffuse, and was often present in a specific orientation with respect to the projection. Although the function of Ssf1p appears to originate in the nucleus, it is likely that it ultimately acts on one or more of the proteins that is directly involved in the morphological response to pheromone. Because many of the proteins required for projection formation during mating are also required for bud formation during vegetative growth, regulation of the activity or amount of one or more of these proteins by Ssf1p could explain its role in both mating and dividing cells.


Gene ◽  
2000 ◽  
Vol 242 (1-2) ◽  
pp. 87-95 ◽  
Author(s):  
Sébastien Grec ◽  
Yingchun Wang ◽  
Laurence Le Guen ◽  
Valentine Negrouk ◽  
Marc Boutry

2008 ◽  
Vol 374 (2) ◽  
pp. 210-213 ◽  
Author(s):  
Brian R. Kupchak ◽  
Nancy Y. Villa ◽  
Lidia V. Kulemina ◽  
Thomas J. Lyons
Keyword(s):  

2002 ◽  
Vol 12 (21) ◽  
pp. 1828-1832 ◽  
Author(s):  
Jason X Cheng ◽  
Monique Floer ◽  
Paul Ononaji ◽  
Gene Bryant ◽  
Mark Ptashne

1994 ◽  
Vol 14 (12) ◽  
pp. 7909-7919 ◽  
Author(s):  
K S Bowdish ◽  
H E Yuan ◽  
A P Mitchell

Many yeast genes that are essential for meiosis are expressed only in meiotic cells. Known regulators of early meiotic genes include IME1, which is required for their expression, and SIN3 and UME6, which prevent their expression in nonmeiotic cells. We report here the molecular characterization of the RIM11 gene, which we find is required for expression of several early meiotic genes. A close functional relationship between RIM11 and IME1 is supported by two observations. First, sin3 and ume6 mutations are epistatic to rim11 mutations; prior studies have demonstrated their epistasis to ime1 mutations. Second, overexpression of RIM11 can suppress an ime1 missense mutation (ime1-L321F) but not an ime1 deletion. Sequence analysis indicates that RIM11 specifies a protein kinase related to rat glycogen synthase kinase 3 and the Drosophila shaggy/zw3 gene product. Three partially defective rim11 mutations alter residues involved in ATP binding or catalysis, and a completely defective rim11 mutation alters a tyrosine residue that corresponds to the site of an essential phosphorylation for glycogen synthase kinase 3. Immune complexes containing a hemagglutinin (HA) epitope-tagged RIM11 derivative, HA-RIM11, phosphorylate two proteins, p58 and p60, whose biological function is undetermined. In addition, HA-RIM11 immune complexes phosphorylate a functional IME1 derivative but not the corresponding ime1-L321F derivative. We propose that RIM11 stimulates meiotic gene expression through phosphorylation of IME1.


Sign in / Sign up

Export Citation Format

Share Document