transcriptional machinery
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 11)

H-INDEX

28
(FIVE YEARS 3)

Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1836
Author(s):  
Thomas Hennig ◽  
Lara Djakovic ◽  
Lars Dölken ◽  
Adam W. Whisnant

During lytic infection, herpes simplex virus (HSV) 1 induces a rapid shutoff of host RNA synthesis while redirecting transcriptional machinery to viral genes. In addition to being a major human pathogen, there is burgeoning clinical interest in HSV as a vector in gene delivery and oncolytic therapies, necessitating research into transcriptional control. This review summarizes the array of impacts that HSV has on RNA Polymerase (Pol) II, which transcribes all mRNA in infected cells. We discuss alterations in Pol II holoenzymes, post-translational modifications, and how viral proteins regulate specific activities such as promoter-proximal pausing, splicing, histone repositioning, and termination with respect to host genes. Recent technological innovations that have reshaped our understanding of previous observations are summarized in detail, along with specific research directions and technical considerations for future studies.


2021 ◽  
Author(s):  
Hao Deng ◽  
Bomyi Lim

The mechanism by which transcriptional machinery is recruited to enhancers and promoters to regulate gene expression is one of the most challenging and extensively studied questions in modern biology. Here, we ask if inter-allelic interactions between two homologous alleles can affect gene regulation. Using MS2- and PP7-based, allele-specific live imaging assay, we visualized de novo transcription of a reporter gene in hemizygous and homozygous Drosophila embryos. Surprisingly, each homozygous allele produced fewer RNAs than the hemizygous allele, suggesting the possibility of allelic competition in homozygotes. Moreover, the MS2-yellow reporter gene showed reduced transcriptional activity when a partial transcription unit (enhancer or promoter only) was in the homologous position. We propose that the transcriptional machinery that binds to both the enhancer and promoter region, such as RNA Pol II or preinitiation complexes, may be responsible for the allelic competition. To support this idea, we showed that the homologous alleles did not interfere with each other in earlier nuclear cycles when Pol II is in excess, while the degree of interference gradually increased in nuclear cycle 14. Such allelic competition was observed for endogenous snail as well. Our study provides new insights into the role of 3D inter-allelic interactions in gene regulation.


2021 ◽  
Vol 118 (6) ◽  
pp. e1922864118 ◽  
Author(s):  
Yu-Ling Lee ◽  
Keiichi Ito ◽  
Wen-Chieh Pi ◽  
I-Hsuan Lin ◽  
Chi-Shuen Chu ◽  
...  

The chimeric transcription factor E2A-PBX1, containing the N-terminal activation domains of E2A fused to the C-terminal DNA-binding domain of PBX1, results in 5% of pediatric acute lymphoblastic leukemias (ALL). We recently have reported a mechanism for RUNX1-dependent recruitment of E2A-PBX1 to chromatin in pre-B leukemic cells; but the subsequent E2A-PBX1 functions through various coactivators and the general transcriptional machinery remain unclear. The Mediator complex plays a critical role in cell-specific gene activation by serving as a key coactivator for gene-specific transcription factors that facilitates their function through the RNA polymerase II transcriptional machinery, but whether Mediator contributes to aberrant expression of E2A-PBX1 target genes remains largely unexplored. Here we show that Mediator interacts directly with E2A-PBX1 through an interaction of the MED1 subunit with an E2A activation domain. Results of MED1 depletion by CRISPR/Cas9 further indicate that MED1 is specifically required for E2A-PBX1–dependent gene activation and leukemic cell growth. Integrated transcriptome and cistrome analyses identify pre-B cell receptor and cell cycle regulatory genes as direct cotargets of MED1 and E2A-PBX1. Notably, complementary biochemical analyses also demonstrate that recruitment of E2A-PBX1 to a target DNA template involves a direct interaction with DNA-bound RUNX1 that can be further stabilized by EBF1. These findings suggest that E2A-PBX1 interactions with RUNX1 and MED1/Mediator are of functional importance for both gene-specific transcriptional activation and maintenance of E2A-PBX1–driven leukemia. The MED1 dependency for E2A-PBX1–mediated gene activation and leukemogenesis may provide a potential therapeutic opportunity by targeting MED1 in E2A-PBX1+ pre-B leukemia.


2021 ◽  
Author(s):  
Na Feng ◽  
Han Feng ◽  
Sheng Wang ◽  
Avinash S. Punekar ◽  
Rudolf Ladenstein ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1024
Author(s):  
Daniel Macveigh-Fierro ◽  
William Rodriguez ◽  
Jacob Miles ◽  
Mandy Muller

Kaposi’s sarcoma-associated herpesvirus (KSHV) induces life-long infections and has evolved many ways to exert extensive control over its host’s transcriptional and post-transcriptional machinery to gain better access to resources and dampened immune sensing. The hallmark of this takeover is how KSHV reshapes RNA fate both to control expression of its own gene but also that of its host. From the nucleus to the cytoplasm, control of RNA expression, localization, and decay is a process that is carefully tuned by a multitude of factors and that can adapt or react to rapid changes in the environment. Intriguingly, it appears that KSHV has found ways to co-opt each of these pathways for its own benefit. Here we provide a comprehensive review of recent work in this area and in particular recent advances on the post-transcriptional modifications front. Overall, this review highlights the myriad of ways KSHV uses to control RNA fate and gathers novel insights gained from the past decade of research at the interface of RNA biology and the field of KSHV research.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Lianjie Ma ◽  
Liwei Guo ◽  
Yunpeng Yang ◽  
Kai Guo ◽  
Yajun Yan ◽  
...  

2019 ◽  
Vol 116 (28) ◽  
pp. 14228-14237 ◽  
Author(s):  
Bing Zhou ◽  
Maja Semanjski ◽  
Natalie Orlovetskie ◽  
Saurabh Bhattacharya ◽  
Sima Alon ◽  
...  

Bacterial spores can remain dormant for years but possess the remarkable ability to germinate, within minutes, once nutrients become available. However, it still remains elusive how such instant awakening of cellular machineries is achieved. UtilizingBacillus subtilisas a model, we show that YwlE arginine (Arg) phosphatase is crucial for spore germination. Accordingly, the absence of the Arg kinase McsB accelerated the process. Arg phosphoproteome of dormant spores uncovered a unique set of Arg-phosphorylated proteins involved in key biological functions, including translation and transcription. Consequently, we demonstrate that during germination, YwlE dephosphorylates an Arg site on the ribosome-associated chaperone Tig, enabling its association with the ribosome to reestablish translation. Moreover, we show that Arg dephosphorylation of the housekeeping σ factor A (SigA), mediated by YwlE, facilitates germination by activating the transcriptional machinery. Subsequently, we reveal that transcription is reinitiated at the onset of germination and its recommencement precedes that of translation. Thus, Arg dephosphorylation elicits the most critical stages of spore molecular resumption, placing this unusual post-translational modification as a major regulator of a developmental process in bacteria.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Aimee H Marceau ◽  
Caileen M Brison ◽  
Santrupti Nerli ◽  
Heather E Arsenault ◽  
Andrew C McShan ◽  
...  

Intrinsically disordered transcription factor transactivation domains (TADs) function through structural plasticity, adopting ordered conformations when bound to transcriptional co-regulators. Many transcription factors contain a negative regulatory domain (NRD) that suppresses recruitment of transcriptional machinery through autoregulation of the TAD. We report the solution structure of an autoinhibited NRD-TAD complex within FoxM1, a critical activator of mitotic gene expression. We observe that while both the FoxM1 NRD and TAD are primarily intrinsically disordered domains, they associate and adopt a structured conformation. We identify how Plk1 and Cdk kinases cooperate to phosphorylate FoxM1, which releases the TAD into a disordered conformation that then associates with the TAZ2 or KIX domains of the transcriptional co-activator CBP. Our results support a mechanism of FoxM1 regulation in which the TAD undergoes switching between disordered and different ordered structures.


Sign in / Sign up

Export Citation Format

Share Document