scholarly journals Biosensors design in yeast and applications in metabolic engineering

2019 ◽  
Vol 19 (8) ◽  
Author(s):  
Chenxi Qiu ◽  
Haotian Zhai ◽  
Jin Hou

ABSTRACT Engineering microbial cell factories is a potential approach of sustainable production of chemicals, fuels and pharmaceuticals. However, testing the production of molecules in high throughput is still a time-consuming and laborious process since product synthesis usually does not confer a clear phenotype. Therefore, it is necessary to develop new techniques for fast high-producer screening. Genetically encoded biosensors are considered to be promising devices for high-throughput analysis owing to their ability to sense metabolites and couple detection to an actuator, thereby facilitating the rapid detection of small molecules at single-cell level. Here, we review recent advances in the design and engineering of biosensors in Saccharomyces cerevisiae, and their applications in metabolic engineering. Three types of biosensor are introduced in this review: transcription factor based, RNA-based and enzyme-coupled biosensors. The studies to improve the features of biosensors are also described. Moreover, we summarized their metabolic engineering applications in dynamic regulation and high producer selection. Current challenges in biosensor design and future perspectives on sensor applications are also discussed.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenyu Zhang ◽  
Pengfu Liu ◽  
Weike Su ◽  
Huawei Zhang ◽  
Wenqian Xu ◽  
...  

AbstractTrans-4-hydroxy-l-proline is an important amino acid that is widely used in medicinal and industrial applications, particularly as a valuable chiral building block for the organic synthesis of pharmaceuticals. Traditionally, trans-4-hydroxy-l-proline is produced by the acidic hydrolysis of collagen, but this process has serious drawbacks, such as low productivity, a complex process and heavy environmental pollution. Presently, trans-4-hydroxy-l-proline is mainly produced via fermentative production by microorganisms. Some recently published advances in metabolic engineering have been used to effectively construct microbial cell factories that have improved the trans-4-hydroxy-l-proline biosynthetic pathway. To probe the potential of microorganisms for trans-4-hydroxy-l-proline production, new strategies and tools must be proposed. In this review, we provide a comprehensive understanding of trans-4-hydroxy-l-proline, including its biosynthetic pathway, proline hydroxylases and production by metabolic engineering, with a focus on improving its production.


2018 ◽  
Vol 2 (3) ◽  
pp. 389-403 ◽  
Author(s):  
Ramesh Prasad Pandey ◽  
Prakash Parajuli ◽  
Jae Kyung Sohng

Microbial cell factories are extensively used for the biosynthesis of value-added chemicals, biopharmaceuticals, and biofuels. Microbial biosynthesis is also realistic for the production of heterologous molecules including complex natural products of plant and microbial origin. Glycosylation is a well-known post-modification method to engineer sugar-functionalized natural products. It is of particular interest to chemical biologists to increase chemical diversity of molecules. Employing the state-of-the-art systems and synthetic biology tools, a range of small to complex glycosylated natural products have been produced from microbes using a simple and sustainable fermentation approach. In this context, this review covers recent notable metabolic engineering approaches used for the biosynthesis of glycosylated plant and microbial polyketides in different microorganisms. This review article is broadly divided into two major parts. The first part is focused on the biosynthesis of glycosylated plant polyketides in prokaryotes and yeast cells, while the second part is focused on the generation of glycosylated microbial polyketides in actinomycetes.


2021 ◽  
Author(s):  
Dongsoo Yang ◽  
Cindy Pricilia Surya Prabowo ◽  
Hyunmin Eun ◽  
Seon Young Park ◽  
In Jin Cho ◽  
...  

Abstract Bio-based production of industrially important chemicals and materials from non-edible and renewable biomass has become increasingly important to resolve the urgent worldwide issues including climate change. Also, bio-based production, instead of chemical synthesis, of food ingredients and natural products has gained ever increasing interest for health benefits. Systems metabolic engineering allows more efficient development of microbial cell factories capable of sustainable, green, and human-friendly production of diverse chemicals and materials. Escherichia coli is unarguably the most widely employed host strain for the bio-based production of chemicals and materials. In the present paper, we review the tools and strategies employed for systems metabolic engineering of E. coli. Next, representative examples and strategies for the production of chemicals including biofuels, bulk and specialty chemicals, and natural products are discussed, followed by discussion on materials including polyhydroxyalkanoates (PHAs), proteins, and nanomaterials. Lastly, future perspectives and challenges remaining for systems metabolic engineering of E. coli are discussed.


2014 ◽  
Vol 23 ◽  
pp. 154-164 ◽  
Author(s):  
Juan Cesar Federico Ortiz-Marquez ◽  
Mauro Do Nascimento ◽  
Leonardo Curatti

2019 ◽  
Vol 21 (12) ◽  
pp. 3286-3299 ◽  
Author(s):  
Zong-Feng Hu ◽  
An-Di Gu ◽  
Lan Liang ◽  
Yan Li ◽  
Ting Gong ◽  
...  

A green and sustainable approach is established by metabolic engineering for industrial production of bioactive dammarenediol-II glucosides.


Sign in / Sign up

Export Citation Format

Share Document