Basal area and diameter growth in high-graded eastern temperate mixedwood forests: the influence of acceptable growing stock, species, competition and climate

2019 ◽  
Vol 92 (5) ◽  
pp. 659-669 ◽  
Author(s):  
Hugues Power ◽  
Patricia Raymond ◽  
Marcel Prévost ◽  
Vincent Roy ◽  
Frank Berninger

AbstractHarvesting practices in temperate mixedwoods of eastern North America have a history of diameter-limit cuts, which have often resulted in degraded residual stands. In this study, we examined the factors influencing stand basal area (BA) and tree diameter growth in previously high-graded mixedwood forests, to understand which stands are more likely to recover from high-grading. Over 15 years, we monitored tree growth, recruitment and stem quality of 532 sample plots that were located in high-graded stands of Quebec’s mixedwood forest. We found that diameter growth rates were positively correlated with precipitation-related variables for balsam fir (Abies balsamea) and for yellow birch (Betulla alleghaniensis) but opposing trends for temperature-related variables were found. Conversely to balsam fir, yellow birch growth was positively correlated to temperature variables. Our results also show that BA growth was greater for plots with a larger acceptable growing stock (AGS: trees with potential sawlog production) and that the increase in AGS was greater for plots with larger amount of conifer BA. These result highlights the importance to maintain a proportion of conifer trees in these mixed stands. Moreover, the significant effect of asymmetric competition in our study underscores the relevance of considering the spatial distribution when choosing crop trees.

1964 ◽  
Vol 40 (4) ◽  
pp. 474-481 ◽  
Author(s):  
P. E. Vezina

The concept of stand density in relation to thinning is examined and its development over the years is discussed. Present difficulties of objectively measuring stand density are recognized and probable future trends towards the development of better formulae to express stand density are outlined. Researchers should continue to collect information on interrelationships among stand variables. Certain merits accrue from description of stand density in terms of variables, such as crown closure, that can be measured with some precision from aerial photographs. Conversely, valid estimates of crown closure which are often difficult to obtain by means of devices from the ground, could be predicted from stand density. Three stand variables, used as expressions of stand density, were tested in crown closure simple regressions in even-aged, unmanaged stands of balsam fir (Abies balsamea (L.) Mill.) and jack pine (Pinus banksiana Lamb.). These are: total number of trees, number of trees 4 inches and up, and basal area per acre. The strongest relationship found was the one where crown closure is compared with basal area; it was stronger for jack pine than for balsam fir. This was explained by differences in tolerance among the two species. The significance of these relationships for the stand development, and the feasibility of using height-and diameter-based indices as measures of growing stock in studies of yield are discussed.


2005 ◽  
Vol 81 (6) ◽  
pp. 791-800 ◽  
Author(s):  
Mathieu Fortin

Diameter growth at breast height of 341 balsam fir and red spruce stems has been reproduced over a time lapse of 50 years following a diameter limit cutting. The available information has been analyzed with a statistical model in which the effects of time, species (two levels), ecological type (three levels) and diameter at harvesting have been tested. Results indicate that balsam fir saplings have higher diameter growths than red spruce saplings, but only in the case of better ecological types. The differences between both species are smaller for stems having a merchantable diameter (dbh > 9.0 cm) at harvesting time. On poor ecological station, red spruce diameter growth is more important than for balsam fir and this, whatever the diameter at harvesting time. On the other hand, as indicated by this analysis, stem diameter at the time of silvicultural treatment constitutes a significant variable in the prediction of diameter growth for red spruce stems, while the effect of this variable is less identifiable for balsam fir. Even if significant, the growth differences between the two species are small. The competition created by the balsam fir regeneration on red spruce saplings is definitely not the cause of the depletion of red spruce in second growth stands.. Key words: red spruce (Picea rubens Sarg.), balsam fir (Abies balsamea (L.) Mill.), diameter growth, partial cut, mixed stands, linear model, mixed model


1999 ◽  
Vol 75 (3) ◽  
pp. 515-534 ◽  
Author(s):  
Pierre Pominville ◽  
Stéphane Déry ◽  
Louis Bélanger

An outbreak of spruce budworm, Choristoneura fumiferana (Clem.), occurred between 1974 and 1987, in Quebec, in the eastern balsam fir, Abies balsamea (L.) Mill, - yellow birch, Betula alleghaniensis Britton, ecoclimatic sub-domain. The effect of this disruption has been assessed in mesic balsam fir stands killed during the outbreak, in mesic balsam fir stands partially damaged and in the following stands, also partially damaged: mesic yellow birch – balsam fir stands, mesic white birch, Betulapapyrifera Marsh., - balsam fir stands, mesic balsam fir – yellow birch stands, mesic balsam fir – white birch stands and xeric balsam fir stands. To that effect, surveys were led before, immediately after, and about five years after the outbreak in two blocks that have not been protected with insecticides. These blocks, located in Charlevoix and in Shipshaw management units, are second growth stands originating from clearcuts which occured about 50 years ago. Approximately five years after the outbreak, abundant coniferous regeneration was found everywhere except in the mesic yellow birch –balsam fir stand and in the dead mesic balsam fir stand, where softwood represented less than 50% of the regeneration. On the other hand, young softwood stems were located under the regeneration of white birch and of mountain maple, Acer spicatum Lam, in dead balsam fir stands, in balsam fir – white birch stands, as well as in living balsam fir stands and under mountain maple in yellow birch – balsam fir stands and in balsam fir – yellow birch stands. Our age structures indicate that softwood advance growth was relatively rare in these stands. Thus, during the opening of the canopy by the spruce budworm, intolerant hard-woods and shrubs invaded the still available microsites. In the dead balsam fir stands, stocking of the dominant hardwood regeneration stems is equivalent to that of softwood. Thus, dead balsam fir stands are turning to mixed stands. Xeric stands will remain softwood stands since they show luxuriant softwood regeneration dominating in height. In the other stands, we will have to wait the harvest period before we can adequately assess succession.


1964 ◽  
Vol 40 (3) ◽  
pp. 362-371 ◽  
Author(s):  
P. E. Vezina

A thinning regime was derived through use of a model developed to grow balsam fir (Abies balsamea (L.) Mill.) trees at any desired size between the limits set by normal and open stand densities. Interpolations were made between the normal number of trees in fully-stocked even-aged balsam fir stands and the number at which crowns of fully open-grown individual balsam fir just close at square spacing. The increase in the number of trees in a fully-stocked balsam fir stand of a given average d.b.h. being little influenced by site was used to establish the basis for the thinning regime. The simple regime prescribes a pre-commercial and two commercial thinnings, and a regeneration cutting when the stand reaches about 7 inches in d.b.h. From comparisons of the amount of growing stock of the hypothetical thinned stands with that of unmanaged fully-stocked stands, it would seem that a managed stand of balsam fir might carry a basal area per acre of 49, 58, and 75 per cent of the unmanaged stands at average d.b.h.'s of 3, 5 and 7 inches respectively.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 530 ◽  
Author(s):  
Bo Zhang ◽  
David MacLean ◽  
Rob Johns ◽  
Eldon Eveleigh

Defoliation by spruce budworm (Choristoneura fumiferana Clem.) on balsam fir (Abies balsamea (L.) Mill.) is more severe in fir than in mixed fir-hardwood stands. Previous studies assumed that defoliation in fir-hardwood stands was reduced in proportion to percent hardwood regardless of outbreak severity. We tested the influence of stand composition on defoliation during the first 5 years of a spruce budworm outbreak near Amqui, Quebec, by sampling 27 fir-hardwood plots selected to represent three percent hardwood basal area classes (0%–25%, 40%–65%, and 75%–95%). Balsam fir defoliation was significantly lower (p < 0.001) as hardwood content increased, but the relationship varied with overall defoliation severity each year. Annual plot defoliation in fir-hardwood plots, estimated using: (1) defoliation in pure fir plots and the assumption that defoliation in fir-hardwood plots was reduced in proportion to percent hardwood; (2) a generalized linear mixed-effects model with defoliation in pure fir plots, percent hardwood, and interaction as fixed-effects; and (3) Random Forests prediction incorporating 11 predictor variables, resulted in r = 0.77, 0.87, and 0.92 versus measured defoliation, respectively. Average defoliation severity in softwood plots and percent hardwood content were the most important variables in Random Forests analysis. Data on average defoliation level in softwood stands, as an indicator of overall outbreak severity, improves prediction of balsam fir defoliation in mixed stands.


2005 ◽  
Vol 35 (10) ◽  
pp. 2521-2527 ◽  
Author(s):  
François Potvin ◽  
Normand Bertrand ◽  
Jean Ferron

The snowshoe hare (Lepus americanus Erxleben) is an important prey for many predators in the boreal forest. In this biome, clear-cut landscapes are generally large and consist of aggregated cutting blocks separated by narrow forest strips (typically 60–100 m wide). To identify attributes of forest strips that are important for snowshoe hares, we measured the use of strips using track counts over two winters in six clear-cut landscapes (23–256 km2) in south-central Quebec. Surveys were conducted in 20 riparian strips (RS), 20 upland strips (US), and 15 control sites (CO) at the periphery of clear-cut landscapes. Overall, 392 signs of hare presence were recorded along 50 km of transects. Snowshoe hares were present in one-third of the strips surveyed and were five times less abundant in US and RS than in CO. The species avoided strip edges. Hares were more common in the wider strips (>100 m), in the strips adjacent to residual forest patches (≥25 ha), or in those having a denser shrub canopy, which is often associated with a greater basal area in balsam fir (Abies balsamea (L.) Mill.). To maintain snowshoe hare at moderate densities in large clear-cut landscapes, we suggest leaving uncut forest strips >100 m wide in areas having a good shrub cover with presence of balsam fir.


2013 ◽  
Vol 43 (3) ◽  
pp. 224-233 ◽  
Author(s):  
Marcel Prévost ◽  
Daniel Dumais

Estimating residual tree survival and growth is crucial for evaluating the overall merit of partial harvesting. In this case study, we present the effects of different cutting intensities (0%, 40%, 50%, and 60% of merchantable (diameter at breast height ≥ 9.1 cm) basal area (BA)) on the response of residual trees in two mixed yellow birch (Betula alleghaniensis Britt.) – conifer stands in eastern Quebec, Canada. Primarily aimed at promoting regeneration establishment, the experiment was conducted in two sites 90 km apart (Armagh and Duchesnay), each one containing four replicates of treatments in a randomized block design. Mortality after cutting decreased with increasing BA removal, but losses were two to three times higher at Armagh (62–138 stems/ha) than at Duchesnay (22–88 stems/ha). Loss of conifer stems involved primarily balsam fir (Abies balsamea (L.) Mill.) under natural conditions (control), whereas fir and red spruce (Picea rubens Sarg.) were equally affected in partial cuts. Red maple (Acer rubrum L.) and paper birch (Betula papyrifera Marsh.) were lost regardless of treatment. As a whole, growth in merchantable BA increased with cutting intensity. Uniform partial cuts produced good BA growth response from conifers at Armagh (0.27–0.28 m2·ha−1·year−1) and from hardwoods at Duchesnay (0.16–0.25 m2·ha−1·year−1), whereas BA growth was negligible for both species groups in the control. We examine the role of species composition and stand structure before cutting in the response of residual trees.


1996 ◽  
Vol 72 (4) ◽  
pp. 393-398 ◽  
Author(s):  
Éric Bauce

Field rearing experiments of spruce budworm, Choristoneura fumiferana (Clem.), were conducted in conjunction with foliar chemical analyses, one and two years after a commercial thinning (removal of 25% stand basal area) in a 50-year-old balsam fir, Abies balsamea (L.) Mill., stand. The first year after thinning, spruce budworm larvae reared on the residual trees developed five days faster and removed 43% more foliage than those reared on control trees, but in the second year they developed two days faster and removed 37% more foliage. The increase in larval development rate was related to an increase in foliar soluble sugars while a reduction in foliar monoterpenes caused by the thinning apparently accounted for the greater amount of foliage ingested by the larvae. The first year after thinning, trees were more vulnerable to spruce budworm because there was no increase in foliage production and the trees were more heavily defoliated. However, in the second year trees were less vulnerable to the insect because there was an increase in foliage production that exceeded the increase in defoliation, hence a net gain in foliage. Results from this study showed that commercial thinning could reduce the vulnerability of balsam fir trees to spruce budworm if thinning is conducted two years prior to budworm outbreak, but the same silvicultural procedure could increase the vulnerability to the insect if it is conducted during an outbreak. Key words: spruce budworm, balsam fir, chemistry, thinning, defoliation


2009 ◽  
Vol 123 (2) ◽  
pp. 117 ◽  
Author(s):  
Rémi Hébert ◽  
Jean Huot

To determine if gap dynamics can play an important role in the natural regeneration process of Balsam Fir (Abies balsamea)-Yellow Birch (Betula alleghaniensis) forests and to determine the effects of gap characteristics on regenerating woody species, we sampled 119 gaps from 64 forest stands in La Mauricie National Park. Gaps averaged 184.5 m² in size. The mean gap age was 7.8 years. Gaps were usually created by broken or uprooted trees and only rarely resulted from Spruce Budworm (Choristoneura fumiferana) outbreaks. We found 25 species that regenerated in the gaps or under the forest cover. When considering all species, significantly more stems/ha were in gaps than under the forest cover. Gap characteristics generally did not influence regenerating woody species. We present a comprehensive model of gap dynamics in Balsam Fir-Yellow Birch forests, starting from a dense canopy, continuing with the creation and colonization of gaps, and ending to the closure of the canopy. Gap dynamics play an important role in the natural regeneration process of Balsam Fir-Yellow Birch forests.Afin de déterminer si la dynamique par trouée peut jouer un rôle important comme processus naturel de régénération de la sapinière à Bouleau Jaune et aussi afin de déterminer les effets des caractéristiques des trouées sur la régénération, nous avons échantillonné 119 trouées dans 64 peuplements forestiers au parc national de la Mauricie. Ces ouvertures avaient une superficie moyenne de 184,5 m². L’âge moyen des ouvertures était de 7,8 ans. Elles étaient généralement créées par un arbre cassé ou déraciné. Peu d’ouvertures étaient créées par des épidémies de la Tordeuse des Bourgeons de l’Épinette. Au total, 25 espèces en régénération ont été rencontrées dans les ouvertures ou sous le couvert forestier. En considérant toutes les espèces, il y avait significativement plus de tiges/ha dans les ouvertures que sous le couvert forestier. Les caractéristiques des trouées n’influençaient généralement pas la régénération. Nous présentons un modèle complet sur la dynamique par trouée dans la sapinière à Bouleau jaune, commençant avec une canopée dense, continuant avec la création et la colonisation des trouées, et se terminant avec la fermeture de la canopée. La dynamique par trouée joue un rôle important dans le régime de perturbations de la sapinière à Bouleau jaune.


2003 ◽  
Vol 20 (4) ◽  
pp. 148-153 ◽  
Author(s):  
Dale S. Solomon ◽  
Lianjun Zhang ◽  
Thomas B. Brann ◽  
David S. Larrick

Abstract Cumulative and annual mortality of red spruce (Picea rubens Sarg.) and balsam fir [Abies balsamea (L.) Mill.] were examined over a 10 yr period to follow the mortality patterns in unprotected spruce-fir forests in northern Maine. Different mortality patterns were determined based on stand composition classes and merchantability classes. In general, balsam fir was more vulnerable to budworm attack, and reached 92–100% basal area mortality and 84–97% stem density mortality 12 yr after the start of the outbreak. Red spruce, in contrast, had approximately 32–59% basal area mortality and 30–66% stem density mortality during the same time period. Balsam fir mortality started 1 to 2 yr before spruce, while spruce mortality continued 2 to 3 yr after fir mortality was completed. Higher mortality was found in smaller trees than sawtimber-sized trees. Stands with hardwood components (30–70% in basal area) had the lowest mortality rate for both species. Furthermore, Schnute growth function (Schnute 1981) was used to characterize the cumulative mortality trajectories after the defoliation of spruce and fir by stand composition classes. The models estimated the time when annual mortality achieved maximum, the cumulative mortality at that time, and the asymptotic mortality over a long time period after the start of the attack. The information can provide guidelines for predicting protection strategies and scheduling salvage harvests.


Sign in / Sign up

Export Citation Format

Share Document